Блог пользователя MathK30

Автор MathK30, история, 10 месяцев назад, По-английски

Hi Guys.

I meet a problem which we have to build a graph of n vertices such that the number of edges is minimized and among 3 vertices i j k, we have a least one of the edge i j, i k, or k j.

I think the solution would be to create 2 complete graphs, each with n / 2 vertices. But I can't prove that partitioning all n vertices into one complete graph and then removing some unnecessary edges is not more optimal than this. Please help me ToT.

  • Проголосовать: нравится
  • +17
  • Проголосовать: не нравится

»
10 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Auto comment: topic has been updated by MathK30 (previous revision, new revision, compare).

»
10 месяцев назад, # |
Rev. 3   Проголосовать: нравится +4 Проголосовать: не нравится

Hello lady/bro, by taking the complement of this graph, we reduce it to the Turan's theorem, and the answer is $$$\frac{n(n-1)}{2} - \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$$$. You can construct the graph by induction.