Блог пользователя mredigonda

Автор mredigonda, 10 лет назад, По-английски

Hello, i'm an OI contestant and recently I found a lot of problems like this one:

You have a n by n matrix, each cell is either 0 or 1. Find the maximum subsquare in which all the cells are 1.

This is the classic problem, but there are a lot of variants: find the maximum rectangle, find the maximum area of two consecutive subsquares, etc.

I know a solution in O(n^3) and I know there is a solution in O(n^2) but I can't understand it, can you please explain me how it works? or give me some resource to read about it?

Also I have a particular interest in "find the maximum area of two consecutive subsquares".

It'd be great if you can help me, thanks!

  • Проголосовать: нравится
  • +9
  • Проголосовать: не нравится

»
10 лет назад, # |
  Проголосовать: нравится +15 Проголосовать: не нравится

Let dp(i,j) be: The largest square sub matrix length with bottom right corner as cell (i,j).

No Try finding the link between dp(i,j) and dp(i-1,j-1) in O(1).

»
10 лет назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

this problem can be reduced to this http://www.informatik.uni-ulm.de/acm/Locals/2003/html/histogram.html, check the explanation here http://www.informatik.uni-ulm.de/acm/Locals/2003/html/judge.html

for the problem of the matrix you can fix a row and run the algorithm above in a new array of size # of columns, where the entry in position i is equal to the maximum sequence of one in column i above the (r, i) entry, here r is the current row...

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Hi Maxi! I know you understand the problem now, but anyways here's a very good video for those who want to learn how to solve it.

https://www.youtube.com/watch?v=g8bSdXCG-lA&feature=youtu.be

It's the cuadratic solution.