How to solve the problem from latest Codechef Long Contest :
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
How to solve the problem from latest Codechef Long Contest :
Название |
---|
Let's think of a way construct a permutation: Initially, it's empty. One by one, we add an element. Assume, after that we have permutation p1, p2, ..., pk and pi is recent element. So, we must have: p[i-1] + d > p[i], p[i] + d> p[i+1]. If the sequence we add is non-decreasing, then we just care about the condition p[i-1] + d > p[i]. Clearly, the way we add pi equals to the number of element before pi (in sorted non-decreasing sequence) that greater than p[i]-d and plus one for adding at first position. (*) Therefore, we have a solution in O(m * n * log(n)). In order to improve that complexity, in each query, we maintain the number (*) for each element. And in each query, there are O(D) element is affected. Complexity reduce to O((n + m) * d).
But how are we counting the number of valid permutations using the above logic, Could you please elaborate your solution ??
It's the product of them. Example, we have sequence: 1, 3, 4, 7, 9 and d = 3. There is no number less than 1 and greater than 1 — 3. There is one number less than 3 and greater than 3 — 3. There is one number less than 4 and greater than 4 — 3. There is no number less than 7 and greater than 7 — 3. There is one number less than 9 and greater than 9 — 3. So the answer in this case is: (0 + 1) * (1 + 1) * (1 + 1) * (0 + 1) * (1 + 1).
I got the approach, But what is the intuition behind this counting approach ??
Thanx got it :)
My solution is complicated. Let's maintain cnt[i] count the number of sequence equals to i in each query. Because, each element can be large as 10^9, so we must decompress them. After having cnt[i] for each i, we will be able to count the number of way add cnt[i] numbers value 'i' in the above way.
How to solve WRDSUM?
Use inclusive-exclusive principle: Almost always F(n) = n. So we start with 2 + ... + n. Let's look how to fix our sum
we have to subtract and put instead.
we have to subtract and put instead.
we have to subtract and
and put , and instead.
And so on. If you calculate this properly you will get sth like this
The formula 2d + ... + xd is a polynomial of degree d + 1 so we can use Lagrange interpolation to get coefficients, or precompute Bernoulli numbers and use Faulhaber's formula. Notice that max D is around .
Depending on implementation we should get sth like O(D2) or even faster solution. Use python or java to avoid bignum implementation.