MarioYC's blog

By MarioYC, 13 years ago, In English
I'm trying to solve this problem, however I'm getting WA on test 15. I first handle cases where a = 0 or b = 0, then solve a != 0 and b != 0 by using extended euclid algorithm to calculate k = -a^{-1}c (mod b), which replaced in the equation gives me to inequalities.

#include <cstdio>
#include <algorithm>
#include <cmath>

using namespace std;

struct EuclidReturn{
    long long u,v,d;
    
    EuclidReturn(long long _u, long long _v, long long _d){
        u = _u; v = _v; d = _d;
    }
};

EuclidReturn Extended_Euclid(long long a, long long b){
    if(b == 0) return EuclidReturn(1,0,a);
    EuclidReturn aux = Extended_Euclid(b,a % b);
    long long v = aux.u - (a / b) * aux.v;
    return EuclidReturn(aux.v,v,aux.d);
}

long long modular_inverse(int a, int n){
    EuclidReturn  aux = Extended_Euclid(a,n);
    return ((aux.u / aux.d) % n + n) % n;
}

long long solve(int a, int b, int c, int x1, int x2, int y1, int y2){
    if(x1 > x2 || y1 > y2) return 0;    
    
    if(a == 0 && b == 0){
        if(c == 0) return (long long)(x2 - x1 + 1) * (y2 - y1 + 1);
        return 0;
    }
    
    if(a == 0){
        if(c % b == 0 && y1 <= -c/b && -c/b <= y2) return x2 - x1 + 1;
        return 0;
    }
    
    if(b == 0){
        if(c % a == 0 && x1 <= -c/a && -c/a <= x2) return y2 - y1 + 1;
        return 0;
    }
    
    int g = __gcd(abs(a),abs(b));
    
    if(c % g != 0) return 0;
    
    a /= g; b /= g; c /= g;
    
    if(b < 0){
        a = -a;
        b = -b;
        c = -c;
    }
    
    long long k = modular_inverse((a % b + b) % b,b) * ((-c % b + b) % b) % b;
    long long k2 = (a*k + c) / b;
    long long L1 = ceil((double)(x1 - k) / b),U1 = floor((double)(x2 - k) / b),L2,U2;
    
    if(a < 0){
        L2 = ceil((double)(y1 + k2) / (-a));
        U2 = floor((double)(y2 + k2) / (-a));
    }else{
        L2 = ceil((double)(-k2 - y2) / a);
        U2 = floor((double)(-k2 - y1) / a);
    }
    
    return max(0LL,min(U1,U2) - max(L1,L2) + 1);
}

int main(){
    int a,b,c,x1,x2,y1,y2;
    
    scanf("%d %d %d %d %d %d %d",&a,&b,&c,&x1,&x2,&y1,&y2);
    printf("%lld\n",solve(a,b,c,x1,x2,y1,y2));
    
    return 0;
}


  • Vote: I like it
  • 0
  • Vote: I do not like it

13 years ago, # |
Rev. 2   Vote: I like it 0 Vote: I do not like it

if you won't want, see my code. I used advanced euclidian algorithm.
13 years ago, # |
  Vote: I like it 0 Vote: I do not like it
The problem was that I used %lld
»
11 years ago, # |
  Vote: I like it 0 Vote: I do not like it

please Explain the teems ~~~~~ long long k = modular_inverse((a % b + b) % b,b) * ((-c % b + b) % b) % b; long long k2 = (a*k + c) / b; long long L1 = ceil((double)(x1 — k) / b),U1 = floor((double)(x2 — k) / b),L2,U2;

if(a < 0){
    L2 = ceil((double)(y1 + k2) / (-a));
    U2 = floor((double)(y2 + k2) / (-a));
}else{
    L2 = ceil((double)(-k2 - y2) / a);
    U2 = floor((double)(-k2 - y1) / a);
}

return max(0LL,min(U1,U2) - max(L1,L2) + 1);

~~~~~