Блог пользователя usaxena95

Автор usaxena95, 9 лет назад, По-английски

Introduction

In this post, I am going to share my little knowledge on how to solve some problems involving calculation of Sum over Subsets(SOS) using dynamic programming. Thus the name SOS DP. I have chosen this topic because it appears frequently in contests as mediu2m-hard and above problems but has very few blogs/editorials explaining the interesting DP behind it. I also have a predilection for this since I came across it for the first time in ICPC Amritapuri Regionals 2014. Since then I have created many questions based on this concept on various platforms but the number of accepted solutions always seems to be disproportionate to the lucidity of the concept. Following is a small attempt to bridge this gap 😉

Problem

I will be addressing the following problem: Given a fixed array A of 2N integers, we need to calculate ∀ x function F(x) = Sum of all A[i] such that x&i = i, i.e., i is a subset of x.

Prerequisite

  • Basic Dynamic Programming
  • Bitmasks

In no way this should be considered an introduction to the above topics.

Solutions

Bruteforce

for(int mask = 0;mask < (1<<N); ++mask){
	for(int i = 0;i < (1<<N); ++i){
		if((mask&i) == i){
			F[mask] += A[i];
		}
	}
}

This solution is quite straightforward and inefficient with time complexity of O(4N)

Suboptimal Solution

// iterate over all the masks
for (int mask = 0; mask < (1<<n); mask++){
	F[mask] = A[0];
    // iterate over all the subsets of the mask
    for(int i = mask; i > 0; i = (i-1) & mask){
    	F[mask] += A[i];
    }
}

Not as trivial, this solution is more efficient with time complexity of O(3N). To calculate the time complexity of this algorithm, notice that for each mask we iterate only over its subsets. Therefore if a mask has K on bits, we do 2K iterations. Also total number of masks with K on bits is . Therefore total iterations =

SoS Dynamic Programming solution

In this approach we will try to iterate over all subsets of mask in a smarter way. A noticeable flaw in our previous approach is that an index A[x] with x having K off bits is visited by 2K masks. Thus there is repeated recalculation.
A reason for this overhead is that we are not establishing any relation between the A[x]'s that are being used by different F[mask]'s. We must somehow add another state to these masks and make semantic groups to avoid recalculation of the group.

Denote . Now we will partition this set into non intersecting groups. , that is set of only those subsets of mask which differ from mask only in the first i bits (zero based).
For example . Using this we can denote any set as a union of some non intersecting sets.

Lets try to relate these sets of numbers. S(mask, i) contains all subsets of mask which differ from it only in the first i bits.
Consider that ith bit of mask is 0. In this case no subset can differ from mask in the ith bit as it would mean that the numbers will have a 1 at ith bit where mask has a 0 which would mean that it is not a subset of mask. Thus the numbers in this set can now only differ in the first i-1 bits. S(mask,i) = S(mask, i-1).
Consider that ith bit of mask is 1. Now the numbers belonging to S(mask, i) can be divided into two non intersecting sets. One containing numbers with ith bit as 1 and differing from mask in the next i-1 bits. Second containing numbers with ith bit as 0 and differing from mask⊕2i in next i-1 bits. S(mask, i) = S(mask, i-1) ∪ S(mask⊕2i, i-1).


The following diagram depicts how we can relate the S(mask,i) sets on each other. Elements of any set S(mask,i) are the leaves in its subtree. The red prefixes depicts that this part of mask will be common to all its members/children while the black part of mask is allowed to differ.


Kindly note that these relations form a directed acyclic graph and not necessarily a rooted tree (think about different values of mask and same value of i)
After realization of these relations we can easily come up with the corresponding dynamic programming.

//iterative version
for(int mask = 0; mask < (1<<N); ++mask){
	dp[mask][-1] = A[mask];	//handle base case separately (leaf states)
	for(int i = 0;i < N; ++i){
		if(mask & (1<<i))
			dp[mask][i] = dp[mask][i-1] + dp[mask^(1<<i)][i-1];
		else
			dp[mask][i] = dp[mask][i-1];
	}
	F[mask] = dp[mask][N-1];
}
//memory optimized, super easy to code.
for(int i = 0; i<(1<<N); ++i)
	F[i] = A[i];
for(int i = 0;i < N; ++i) for(int mask = 0; mask < (1<<N); ++mask){
	if(mask & (1<<i))
		F[mask] += F[mask^(1<<i)];
}

The above algorithm runs in O(N 2N) time.

Discussion Problem

Now you know how to calculate Sum over Subsets for a fixed array A. What would happen if A and F are SOS functions of each other 😉 . Consider following modification to the problem. Assume H1, H2 to be 32 bit integer valued hash functions (just to avoid any combinatoric approach to circumvent this problem) and can be evaluated at any point in constant time.:


I enjoyed solving this with harshil. Lets discuss the approaches in comments :)

Practice Problems

I hope you enjoyed it. Following are some problems built on SOS.

EDIT: Practice problems are now arranged in almost increasing order of difficulty.

  • Проголосовать: нравится
  • +64
  • Проголосовать: не нравится

»
8 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Great tutorial! If only I knew about this before today's contest :P

»
8 лет назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

Good job!

You can also add this problem to the list: http://hsin.hr/coci/archive/2011_2012/contest6_tasks.pdf (problem KOSARE).

»
8 лет назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится
»
8 лет назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

Very well written blog.

P.S:The spelling of prerequisites is wrong

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In suboptimal solution: What is mask initialized to ? It is this line F[mask] = A[0]

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

in suboptimal solution -> first for : 'i' should be 'mask'! :)

»
8 лет назад, # |
  Проголосовать: нравится +13 Проголосовать: не нравится

Great tutorial. I find bitmask concepts hard to undestand. But got a clear understanding with this one. Kudos to the author. :)

»
8 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

I think value of 'i' in 2nd last row of diagram should be zero in all case.

»
8 лет назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

thanks great.

sorry, how we can prove that for(int i = mask; i > 0; i = (i-1) & mask) will pass over all subsets ?

  • »
    »
    8 лет назад, # ^ |
    Rev. 6   Проголосовать: нравится +19 Проголосовать: не нравится

    I will give it a try. As of now I am not able to think about an easier proof. I will try to prove it by mathematical induction.
    Note: Operation M-1 switches OFF the first ON bit and switches ON the remaining prefix. Eg 101100002 - 1 = 101011112

    Statement P(n) = Given an integer M, this algorithm will iterate over all subsets s.t. x differs from M only in the first n bits in strictly decreasing order. algorithm successfully iterates over all elements in S(M, n) in strictly decreasing order.

    Base Case P(0):

    • Case 1: if M is even The first iteration i = M successfully visits S(M,0) = {M}

    • Case 2: if M is odd First iteration i = M, second iteration i = (i-1)&M switches off the 0th bit thus visits . Algo visits in decreasing order

    Hence P(0) is true.

    Assumption: Assume P(n) to be true. Algo visits S(M, n) in descending order.

    Inductive step: To prove P(n+1) is true. Since P(n) is true, algo visits all S(M, n) in descending order.
    P(n+1) is trivially true if n + 1th bit of M is OFF since S(M,n+1) = S(M,n).

    Lets focus on case when n + 1th bit of M is ON. Since the visits of S(M,n) as assumed by P(n) are in descending order, the last integer visited by this algo would be M with first n bits OFF. For example, if M = , n = 4 the last value of i would be .

    After reaching this integer, we do i = (i-1)&M. The i-1 operation turns OFF the n + 1th bit and turns ON first n bits. Taking bitwise AND with original M copies the first n bits of M into it.

    Taking the example above, we have following transitions -> -> ->.
    Thus what we final get is .

    Since P(n) is true, we can now iterate over S(, n). But . Therefore we iterate over all elements of S(M,n+1).

    Hence P(n+1) is true.

    • »
      »
      »
      7 лет назад, # ^ |
      Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

      The example in 2nd last line of the 2nd paragraph under heading "SoS Dynamic Programming solution" doesn't makes sense to me.
      This guy 101 0000 (last element in the set) when XORed with 101 1010 will produce 1010 which is no way <= (1<<3).
      Also the statement that "set of only those subsets of mask which differ from mask only in the first i bits (zero based)" conflicts with x XOR mask being <= (1<<i). It should have been x XOR mask < (1<<i). I am assuming the numbering of positions from Right to Left.
      UPD : I Figured the word it all starts from 0 out !!

      • »
        »
        »
        »
        7 лет назад, # ^ |
        Rev. 3   Проголосовать: нравится +3 Проголосовать: не нравится

        I have the same doubt! Is it a typo or am I missing something?

        UPD: I think it should be 2^(i+1)-1.

    • »
      »
      »
      5 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Can we just say the following invariant:

      let say j is the jth iteration then i is the jth largest value which is subset of mask

»
8 лет назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

That is a great post! It really helped, thank you !!! I tryied the first problem (Special Pairs) source: http://pastebin.com/UXDiad27 But I get WA. My logic is the following: If we find 1 then because we need final result to be zero and we use AND bitwise, then we need to compare it with a number that has 0 at that position. So we go to dp[mask^(1<<i)][i-1] If we find 0 then we can have at that position 0 and 1 as well. So we are seeking in dp[mask][i-1] + dp[mask^(1<<i)][i-1]

Is the logic wrong, or just my source code ? Thanks in advance !

  • »
    »
    8 лет назад, # ^ |
    Rev. 5   Проголосовать: нравится +9 Проголосовать: не нравится

    Got the bug.

    if(exist[0])
        --answer;
    

    Why man why yy yy ? And I was examining your recurrence all this time :P .It is nowhere written i!=j.
    You can have a look at the diff. The correct answer was always just one less than the correct answer :P

    Anyways have fun now :)

  • »
    »
    8 лет назад, # ^ |
      Проголосовать: нравится +4 Проголосовать: не нравится

    An easier way to solve this problem: for any A[i], to find how many numbers are there which has bitwise AND zero with A[i] -> it would just be a subset of one's complement of A[i]. So the answer is

    Anyways your modified recurrence shows your proper understanding of the concept :)

    • »
      »
      »
      8 лет назад, # ^ |
        Проголосовать: нравится +5 Проголосовать: не нравится

      Nice way! Also even if I am not so strong in bitmask I managed to think a modification because your tutorial is so clear and good that made things easier ! Thanks again !

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Given a fixed array A of 2^N integers

I'm unable to understand why 2^N integers must be there in A. Is this a typo?

»
8 лет назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

great tutorial

»
8 лет назад, # |
Rev. 2   Проголосовать: нравится +8 Проголосовать: не нравится

In your memory optimized code shouldn't it be

for(int i = 0; i<(1<<N); ++i)
	F[i] = A[i];
for(int i = 0;i < N; ++i) for(int mask = (1<<N)-1; mask >= 0; --mask){
	if(mask & (1<<i))
		F[mask] += F[mask^(1<<i)];
}

mask is always greater than mask^(1<<i) if i'th bit is set. To calculate for i'th bit we need the value for (i-1)'th bit. In your code F[mask^(1<<i)] actually has the value for i'th bit because it was calculated for i'th bit before mask. If we start from (1<<N)-1 this won't be a problem because F[(mask^(1<<i))] will be calculated for i'th bit after the calculation of F[mask]. Please correct me if I'm wrong. Thanks :)

UPD: I just realized that for F[mask^(1<<i)] actually the calculated value for i'th bit and (i-1)'th bit is same because i'th bit is not set. So your code is correct. Sorry for ignoring it.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    Thanks for informing was stuck on that !

  • »
    »
    12 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Your comment inspired me!
    if the $$$i^{th}$$$ bit of mask is $$$1$$$, then the $$$i^{th}$$$ bit of (mask $$$\bigoplus 2^i$$$) will be $$$0$$$, which will not change in this cycle!
    In this case, the F[mask^(1<<i)] will remain unchanged.
    So it doesn't matter which way the mask changes

»
8 лет назад, # |
  Проголосовать: нравится -8 Проголосовать: не нравится

Hello ,

Can you explain the formula

used in Vim War.Seems like inclusion exclusion to me but I cannot understand it.

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

http://mirror.codeforces.com/contest/165/problem/E Can someone explain it ? please , can't understand dp-state.

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    First solve this problem — Special Pairs. Then this problem should be easy.
    However, in my solution dp state was dp[mask] =  a number from the given array such that . So we have base cases , for other masks initialize with 0.
    Now, for each array elements you need to find out another number from the array, such that their AND is 0. Note that the number you need to find will always be a subset of . So you can just print the number stored at . If it is 0 then there is no solution. [ N = minimum number of bits needed to represent all the numbers of the array]

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Added a nice problem to the set. Varying Kibibits

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

dp[mask][-1] = A[mask]; //handle base case separately (leaf states) .

why it doesn't give array index out of bound exception

»
8 лет назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

It's a new problem in town guys. The problem is the editorial is not explained very well ,, i guess you guys should take a look and if anyone understands may be he can shed some light for us newbies.

https://www.hackerrank.com/contests/world-codesprint-11/challenges/best-mask/editorial

It's a recent codesprint problem from hackerrank.

»
8 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

hey can anyone explain how to approach question this. it is similar to discuss problem but i am unable to do it? thanks in advance,

»
8 лет назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

In the question explained. What is the range of x ?? And the size of array is N or 2^N ???

»
7 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

I can't understand this completely, maybe this is too hard for me.

»
7 лет назад, # |
Rev. 4   Проголосовать: нравится 0 Проголосовать: не нравится

What does F will contain? Does accumulate of F will give the sum over all subsets?
I want to ask that... What is the meaning of F[mask] in the last implementation?
If I need to find SoS then how should I proceed after calculation of F?

  • »
    »
    7 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится
    1. Accumulating F won't give you sum over all subsets of the array.
    2. F[mask] is the sum of A[i] such that mask & i == i, that mean the on bits of i is subset of the on bits of mask.
    3. Solve more problems, you'll find out yourself. Most of the times you'll just need to change the base case.
»
7 лет назад, # |
  Проголосовать: нравится -8 Проголосовать: не нравится

Absolutely Perfect.

»
7 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

1)

for(int i = 0;i < N; ++i) 
     for(int mask = 0; mask < (1<<N); ++mask){
	if(mask & (1<<i))
		F[mask] += F[mask^(1<<i)];
}

2)

for(int mask = 0; mask < (1<<N); ++mask)
    for(int i = 0;i < N; ++i){
	if(mask & (1<<i))
		F[mask] += F[mask^(1<<i)];
}

What is difference between above 2 codes? Do both codes give same result?

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится
    if(mask & (1<<i))
        dp[mask][i] = dp[mask][i-1] + dp[mask^(1<<i)][i-1];
    else
        dp[mask][i] = dp[mask][i-1];
    

    is equivalent to first version and not the second version. The ith iteration of 1) has F[mask] = dp[mask][i]. This is not true in 2).

    • »
      »
      »
      7 лет назад, # ^ |
      Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

      So 2nd version will not count some dp states. Right?

      • »
        »
        »
        »
        7 лет назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        It will visit every state but t will calculate it wrong. When you do F[mask] += F[mask^(1<<i)]. In the ith iteration for F[mask] you actually add dp[mask^(1<<i)][N-1] instead of dp[mask^(1<<i)][i-1]. So all values are wrong.

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
»
7 лет назад, # |
  Проголосовать: нравится -6 Проголосовать: не нравится

for ( x = y; x > 0; x = ( y & (x-1) ) )

generates all subsets of bitmask y.

How does this iteration works? Any intuitive explaination?

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    x starts with the value y, and everytime you subtract 1 from x, the lowest value bit that is set would become unset, and the bits ahead of the lowest set bit (now unset) would become set.

    Eg: x = y = 10100

    x-1 = 10011

    Now when you bitwise AND this with y (which was initially x), you get the common set bits between x and y ( definition of bitwise AND ).

    Eg: x=10011 and y=10100

    x&y = 10000

    Everytime you AND x with y, it is making sure that x is always a subset of y.
    Subtracting x by 1 after every iteration makes sure that you go through all combinations ( 2N ) of the mask y.
    Further proof for the same is given by usaxena95 above.

»
7 лет назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится
»
7 лет назад, # |
Rev. 5   Проголосовать: нравится 0 Проголосовать: не нравится

Untitled

I see it is not clear with the example above. S(1011010, 3) contains 1010000.

Let take the XOR operator: 1011010 xor 101000 = 0001010. In decimal representation, this value should be equal to 2^3 + 2^1 > 2^3, contradicting to (1011010 xor 101000)_{10} <= 2^3.

I may misunderstand. Can someone help me explain this gap?

Thanks,

Hanh Tang

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In this approach we will try to iterate over all subsets of mask in a smarter way. A noticeable flaw in our previous approach is that an index A[x] with x having K off bits is visited by 2^K masks. Thus there is repeated recalculation

Can someone explain me this line?

The mask: 4(100) has 2 off-bits, so 2^2=4 masks will visit the mask 4(100). How?

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Excellent editorial! Kudos...

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Approach for discussion problem?

»
7 лет назад, # |
  Проголосовать: нравится +12 Проголосовать: не нравится

recent one DANYANUM

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Thanks for such a nice blog

»
6 лет назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

One more problem from a recent contest: Or Plus Max

»
6 лет назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

can someone explain what we can't use following for(int mask = 0; mask < (1<<N); ++mask) for(int i = 0;i < N; ++i) { if(mask & (1<<i)) F[mask] += F[mask^(1<<i)]; } how to identify which one to use?

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can we say that when ith bit is ON then simply S(mask,i) = 2*S(mask,i-1), Because all the subsets till (i-1)th bit now have 2 choices .Either they can pair up with ith bit as 0 or 1 ??

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to solve the problem Pepsi Cola?

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
//iterative version
for(int mask = 0; mask < (1<<N); ++mask){
	dp[mask][-1] = A[mask];	//handle base case separately (leaf states)
	for(int i = 0;i < N; ++i){
		if(mask & (1<<i))
			dp[mask][i] = dp[mask][i-1] + dp[mask^(1<<i)][i-1];
		else
			dp[mask][i] = dp[mask][i-1];
	}
	F[mask] = dp[mask][N-1];
}

I think the address of dp[0][-1] is undetectable, will it go wrong?

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
//iterative version
for(int mask = 0; mask < (1<<N); ++mask){
	dp[mask][-1] = A[mask];	//handle base case separately (leaf states)
	for(int i = 0;i < N; ++i){
		if(mask & (1<<i))
			dp[mask][i] = dp[mask][i-1] + dp[mask^(1<<i)][i-1];
		else
			dp[mask][i] = dp[mask][i-1];
	}
	F[mask] = dp[mask][N-1];
}

I think the address of dp[0][-1] is undetectable, will it go wrong?

»
5 лет назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

Great tutorial! Also, isn't the iterative solution akin to finding an N-dimensional prefix sum array with dimensions 2x2...x2? If this is the case, I think it could be possible to extend this idea to "bitmasks" with a different base.

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

When you do the partition, why it is a partition? Mask is in all those sets, right?

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Jersey Number is probably a better place to submit. There seems to be some problem with the testcases on ICPC Live Archive (AC on Codechef gets WA there; Noone has solved it).

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

The suboptimal solution is very clever

»
5 лет назад, # |
Rev. 2   Проголосовать: нравится +32 Проголосовать: не нравится

There is another cool way of visualizing/memorizing SOS that I learnt from errichto's video:

How do you transform a 1D array to its prefix sum? You do: a[i] += a[i - 1].
How do you transform a 2D array to its prefix sum? Normally it is done by p[i][j] = p[i-1][j] + p[i][j-1] - p[i-1][j-1] + a[i][j]. But notice that you can also apply the 1D prefix sum in rows and columns separately:

for i in [1, N]: for j in [1, N]: a[i][j] += a[i][j-1]  
for i in [1, N]: for j in [1, N]: a[i][j] += a[i-1][j]

Now, the sub over submasks problem can be imagined as doing a prefix sum on $$$2\times 2\times\ldots \times2$$$ hypercube! For example, lets say the mask has three bits, and you want sum over submasks for $$$101$$$. That is equivalent to taking the sum from cell $$$(0, 0, 0)$$$ to $$$(1, 0, 1)$$$ on a 3D cube.

So, you can just apply 1D prefix sum on each dimension separately. That is exactly what the final version of the code snippet is doing. It first iterates on the dimension, then does a[..][1][..] += a[..][0][..] for that dimension; in other words, takes prefix sum on that dimension. And after that, the initial array turns into the SOS!

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Kindly note that these relations form a directed acyclic graph and not necessarily a rooted tree (think about different values of mask and same value of i)

can someone explain not a rooted tree more

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can anyone please help me out in the question — VIM WAR ? Couldn't understand the summation formula in the editorial. Thankyou.

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can we use F[mask] = (1 << (__builtin_popcount(mask) - 1)) * a[badbit] + F[nmask] * 2; to update F[mask] in $$$O(1)$$$ where badbit = 31 - __builtin_clz(mask) and nmask = mask - (1 << badbit) ?

    F[0] = 0;
    for(int mask = 1; mask < (1 << n); mask++){

        int badbit = 32 - 1 - __builtin_clz(mask);
        int nmask = mask - (1 << badbit);
        F[mask] = (1 << (__builtin_popcount(mask) - 1)) * a[badbit] + F[nmask] * 2;

    }
»
5 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

for(int i = 0; i<(1<<N); ++i)

F[i] = A[i];

for(int i = 0;i < N; ++i) for(int mask = 0; mask < (1<<N); ++mask){

if(mask & (1<<i))

    F[mask] += F[mask^(1<<i)];

}

let there be two numbers i and j such that i and j bit are set in mask then will f[mask^(1<<j)^(1<<i)] not added twice in f[mask] from above approach

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can I use FWT to solve this problem with the same complexity? F = FWT_AND(A,B),where B=[1,1,1,1...]

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Easy ques, just above code: link

soln : link SAME AS ABOVE

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can I get link of the same problem which discussed above Actually I want to check a little different approach

»
5 лет назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

issue solved

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

This problem from csacademy uses SOS dp as a subroutine. Maybe checking it out.

»
4 года назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

If I need to iterate over the subsets of the mask's complement , How can I apply SoS DP approach? I'm able to apply the 3^N approach easily, However N is upto 20 which would lead to A TLE verdict.


private int dp(int msk) { if (msk == (1 << n) - 1) return 0; if (memo[msk] != -1) return memo[msk]; int max = 0; int avalMsks = msk ^ ((1 << n) - 1); for (int i = avalMsks; i > 0; i = (i - 1) & (avalMsks)) { if (valid[i]) max = Math.max(max, dp(msk | i) + 1); } return memo[msk] = max; }

usaxena95 any thoughts?

here is the problem if anyone is interested :101666G - Going Dutch

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    It seems isomorphic to this problem I ran into a few weeks ago. You'll have to change your DP from "How big is the largest valid partition of (the complement of) this mask?" to "How big is the largest valid partition of any subset of (the complement of) this mask?"

    • »
      »
      »
      4 года назад, # ^ |
      Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

      Edit : I get it now , here is the code in case someone needs it

      private int dp(int msk) {
                  if (msk == (1 << n) - 1)
                      return 1;
                  if (memo[msk] != -1)
                      return memo[msk];
                  int max = 0;
                  for (int i = 0; i < n; i++) {
                      if ((msk & (1 << i)) == 0)
                          max = Math.max(max, dp(msk ^ (1 << i)) + (valid[msk] ? 1 : 0));
                  }
                  return memo[msk] = max;
              }
      
»
4 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Very well explained tutorial! it was very helpful. Thank you UwU

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I have $$$Q \le 200000$$$ queries and set of $$$N \le 200000$$$ bitmasks. For each bitmask in query I have to calculate number of bitmasks in set that have a bitwise AND equal to $$$0$$$ with bitmask from query. How can I solve it, if bitmasks contains $$$50$$$ bits? I already can solve it for $$$20$$$ bits, but can't figure out sparse solution. I thought about something like:

We can just iterate over all parents in prefix tree from this article for all $$$N$$$ leafs and do hashmap[node]++

but it is directed acyclic graph...

»
4 года назад, # |
  Проголосовать: нравится -22 Проголосовать: не нравится

Almost same article with lot more explanations — Link

  • »
    »
    4 года назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    The article linked has exactly same content. That one is blatantly copied, without even citing this blog as reference.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Cant get link for Special Pairs.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Here's problem from CSES Problemset using this technique: https://cses.fi/problemset/task/1654.

»
4 года назад, # |
  Проголосовать: нравится +17 Проголосовать: не нравится

A small reminder, we can change if(mask & (1<<i)) to if (!(mask & (1<<i))), then we can calculate the sum of super set (not subset).

The correctness is simple, we can just change the dp formular above a bit.

And it can easily solve problem D in yesterday contest.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Thank you! I finally passed that problem!

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    or you can keep the if condition same and do F[mask&(1<<i)] += F[mask]; Just adding supersets to the set instead of adding subsets to the set.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to prove complexity in the suboptimal solution? I haven't got how to come to 3^n through the sum.

»
3 года назад, # |
  Проголосовать: нравится +20 Проголосовать: не нравится

Sorry for necroposting, but is there a way to fix the latex/markup sections? I keep on seeing Unable to parse markup [type=CF_TEX]. usaxena95

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I was reading this and started to solve the problems and suddenly whole blog just started showing this. Now I can't see the blog.

Unable to parse markup [type=CF_MARKDOWN]

»
3 года назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

I seem to have seen this trick a long time ago, But I forgot it in today's contest ;)

»
16 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Thanks!

»
12 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can anyone explain the approach involved in Covering Sets (problem 4) I get the sos dp part but how are we calculating the total sum for all triplets

»
11 месяцев назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

Great tutorial, without it I would not be able to understand and solve https://mirror.codeforces.com/contest/1903/problem/D2.