How to count the number of rectanglular submatrix with all 1s in a binary square matrix of size N in O(N^2)?
i have a solution for o(N^3)
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
How to count the number of rectanglular submatrix with all 1s in a binary square matrix of size N in O(N^2)?
i have a solution for o(N^3)
Name |
---|
Nice question! Like you, i am only solving the O(N^3) algorithm with two pointer technique, and i guess O(N^2 Log N) with divide and conquer maybe..
I solved it finally.
i used histograms + range in which current is minimum + radix sort to calculate the range.
Thanks anyways
.
Test your idea with this problem from COCI. My O(N^2 Log N) idea get TLE.