How to count the number of rectanglular submatrix with all 1s in a binary square matrix of size N in O(N^2)?
i have a solution for o(N^3)
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3831 |
3 | Radewoosh | 3646 |
4 | jqdai0815 | 3620 |
4 | Benq | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | gamegame | 3386 |
10 | ksun48 | 3373 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 160 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
How to count the number of rectanglular submatrix with all 1s in a binary square matrix of size N in O(N^2)?
i have a solution for o(N^3)
Название |
---|
Nice question! Like you, i am only solving the O(N^3) algorithm with two pointer technique, and i guess O(N^2 Log N) with divide and conquer maybe..
I solved it finally.
i used histograms + range in which current is minimum + radix sort to calculate the range.
Thanks anyways
.
Test your idea with this problem from COCI. My O(N^2 Log N) idea get TLE.