Problem- link
Please anybody explain the soln.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
4 | atcoder_official | 161 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Problem- link
Please anybody explain the soln.
Название |
---|
see Ashishgup solution . dp cant be more neat than his solution
I saw but unable to understand this single line means why everyone is using suffix array even if we are processing from left to right :(
ans = max(dp(i + 1), a[i] + suf[i + 1] — dp(i + 1));
My logic was:
DP(i) stores the maximum value a particular player can get if he starts at the ith index and goes till the end of the array.
One possibility is, I retain my turn and skip the element, thus going to dp(i+1).
Other possibility is, I take the ith element (and get a score of a[i]) and lose my turn. If I lose my turn, then the score I get is:
sum of remaining elements — the maximum score that the other player can get if he starts at index i + 1.
That is, suf[i+1] — dp(i+1).
Hence the line: ans = max(dp(i + 1), a[i] + suf[i + 1] — dp(i + 1)).