If you're interested in learning more about CPU hardware details and how they affect program performance, read my blog post here on how memory latency impacts binary search and causes an $$$O(\sqrt[3]{n})$$$ runtime.
Enjoy!
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
If you're interested in learning more about CPU hardware details and how they affect program performance, read my blog post here on how memory latency impacts binary search and causes an $$$O(\sqrt[3]{n})$$$ runtime.
Enjoy!
Name |
---|
Envying people living in $$$k$$$-dimensional space (of course, $$$k > 3$$$), where binary search takes just $$$O(\sqrt[k]{n})$$$ time!
My whole life has been a lie.