Does anyone know how to solve this problem?
http://www.spoj.com/problems/LQDNUMS/
Or at least please give me the references for it. Thanks a lot in advance.
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Does anyone know how to solve this problem?
http://www.spoj.com/problems/LQDNUMS/
Or at least please give me the references for it. Thanks a lot in advance.
Name |
---|
I have some ideas to solve it in polynomial time, but it's too slow.
Let F(N) be the length of the result string. We have to find N, such that F(N) == M.
Use binary search to find N. F(N) can be calculated using DP and fast matrix exponentiation. I know how to do it with about 18-36 matrices of size K x K, K ~ 18 * 10 * 2.
No, i was wrong with matrix exponentiation. I think there is kind of dp, we have to divide iterval [1..N] into several ones with the same prefix. for example for N = 1234 ther will be
[1..999] for all numbers with length < length(N)
[1000..1199] — 1 234
[1200..1229] — 12 34
[1230..1234] — 123 4
for each of these intervals we have to use this dp recursively.