Блог пользователя hly1204

Автор hly1204, история, 3 года назад, По-английски

Suppose $$$p$$$ is an odd prime and $$$a$$$ is a quadratic residue modulo $$$p$$$. Cipolla's algorithm shows that $$$b:=x^{(p+1)/2}\bmod{(x^2-tx+a)}$$$ such that $$$b^2=a$$$ for some irreducible polynomial $$$x^2-tx+a\in\mathbb{F}_p[x]$$$.

I don't know how to prove this properly. If there are any mistakes or typos, please let me know, thanks! Let $$$\alpha$$$ be a zero of $$$x^2-tx+a$$$, $$$\mathbb{F}_p(\alpha):=\lbrace a_0+a_1\alpha :a_0,a_1\in\mathbb{F}_p\rbrace$$$, and let $$$\beta$$$ be a zero of $$$x^2-(t^2-4a)$$$, $$$\mathbb{F}_p(\beta):=\lbrace a_0+a_1\beta :a_0,a_1\in\mathbb{F}_p\rbrace$$$. We may easily find homomorphisms between $$$\mathbb{F}_p(\alpha)$$$ and $$$\mathbb{F}_p(\beta)$$$. So I think we just need to show that $$$((t+\beta )/2)^{p+1}=a$$$.

A lot of blogs show that $$$(t+\beta)^p=t-\beta$$$ according to binomial theorem and Fermat's little theorem, so

$$$ \begin{aligned} ((t+\beta)/2)^{p+1}&=(t+\beta)(t-\beta)/4\\ &=(t^2-\beta^2)/4\\ &=a \end{aligned} $$$

Bostan and Mori's paper shows that the computation of $$$x^n$$$ modulo a monic polynomial sometimes is equivalent to the computation of one term of a rational function $$$P(x)/Q(x)$$$ where $$$P,Q$$$ are both polynomials and $$$\deg(P(x))\lt \deg(Q(x))$$$.

We have

$$$ b=\left[x^{(p+1)/2}\right]\dfrac{1-tx}{1-tx+ax^2} $$$

and

$$$ \left[x^n\right]\dfrac{k_0+k_1x}{1+k_2x+k_3x^2}= \begin{cases} \left[x^{(n-1)/2}\right]\dfrac{k_1-k_0k_2+k_1k_3x}{1+(2k_3-k_2^2)x+k_3^2x^2}&\text{if }n\bmod 2=1\\ \left[x^{n/2}\right]\dfrac{k_0+(k_0k_3-k_1k_2)x}{1+(2k_3-k_2^2)x+k_3^2x^2}&\text{otherwise} \end{cases} $$$

This may save some multiplications.

submission(Library Checker)

Actually, the initial value of $$$k_1$$$ does no matter to the result. So we could mainly focus on the computation of one term of the inverse of formal power series. I don't know if we could do better.

  • Проголосовать: нравится
  • +112
  • Проголосовать: не нравится

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Auto comment: topic has been updated by hly1204 (previous revision, new revision, compare).

»
3 года назад, # |
Rev. 3   Проголосовать: нравится +41 Проголосовать: не нравится

Berlekamp-Rabin algorithm looks simpler, easier to implement and faster to me. Also it's easily generalized to finding roots of higher order and even roots of arbitrary polynomials over $$$\mathbb Z_p$$$.

Problem. For prime $$$p$$$, find $$$a$$$ such that $$$a^2 \equiv y \pmod p$$$.

Solution. Calculate $$$(z+x)^{\frac{p-1}{2}} \pmod{x^2-y}$$$ for random $$$z \in \mathbb Z_p$$$ such that $$$z^2 \neq y$$$.

If the result is $$$a_0 + a_1 x$$$ where $$$a_1 \neq 0$$$, then $$$a_0=0$$$ and $$$a=\frac{1}{a_1}$$$ is the solution.

Tl;dr.

Proof by AC.

Explanation.

Due to Chinese remainder theorem, it is equivalent to computing $$$(z+x)^{\frac{p-1}{2}}$$$ modulo $$$x-a$$$ and $$$x+a$$$.

Modulo $$$x-a$$$ it would be equal to $$$(z+a)^{\frac{p-1}{2}}$$$ and modulo $$$x+a$$$ it would be equal to $$$(z-a)^{\frac{p-1}{2}}$$$.

If both are $$$1$$$ or both are $$$-1$$$, the result would be $$$1$$$ or $$$-1$$$ modulo $$$x^2-y$$$ as well.

However if $$$z+a$$$ is a quadratic residue while $$$z-a$$$ is not (hence one makes $$$1$$$, the other makes $$$-1$$$), then

$$$\begin{cases} a_0 + a_1 x \equiv 1 \pmod{x-a},\\ a_0 + a_1 x \equiv -1 \pmod{x+a} \end{cases} \implies a_0 = 0, a_1 = \frac{1}{a}.$$$

Actual probability of success is at least $$$\frac{1}{2}$$$, you can find a proof in some book or paper or whatever.

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    btw, subject can be shortened to this and be pretty fast, but ofc it is impossible to reproduce from scratch