Suppose we have $$$n$$$ vertices and we add edge $$$(i, j)$$$ with probability $$$p$$$. Is there a way to check if it is hamiltonian path/cycle or to find the longest non-self-intersecting path/cycle in polynomial time?
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Suppose we have $$$n$$$ vertices and we add edge $$$(i, j)$$$ with probability $$$p$$$. Is there a way to check if it is hamiltonian path/cycle or to find the longest non-self-intersecting path/cycle in polynomial time?
Let $$$p_i$$$ — minimal prime divisor of $$$i$$$.
$$$s(n) = \sum_{i=2}^n \lceil \log_2(p_i) \rceil$$$.
I checked that $$$s(n) \leq 4 \cdot n$$$ if $$$n \leq 10^{10}$$$.
What is actual estimation of this sum?
Name |
---|