A. Parity
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,

$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$

For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.

Determine whether $$$n$$$ is even or odd.

Input

The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits.

The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$.

The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$.

Output

Print "even" if $$$n$$$ is even, otherwise print "odd".

You can print each letter in any case (upper or lower).

Examples
Input
13 3
3 2 7
Output
even
Input
10 9
1 2 3 4 5 6 7 8 9
Output
odd
Input
99 5
32 92 85 74 4
Output
odd
Input
2 2
1 0
Output
even
Note

In the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.

In the second example, $$$n = 123456789$$$ is odd.

In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.

In the fourth example $$$n = 2$$$.