Rating changes for last rounds are temporarily rolled back. They will be returned soon. ×

C. Turtle Fingers: Count the Values of k
time limit per test
5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given three positive integers $$$a$$$, $$$b$$$ and $$$l$$$ ($$$a,b,l>0$$$).

It can be shown that there always exists a way to choose non-negative (i.e. $$$\ge 0$$$) integers $$$k$$$, $$$x$$$, and $$$y$$$ such that $$$l = k \cdot a^x \cdot b^y$$$.

Your task is to find the number of distinct possible values of $$$k$$$ across all such ways.

Input

The first line contains the integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases.

The following $$$t$$$ lines contain three integers, $$$a$$$, $$$b$$$ and $$$l$$$ ($$$2 \le a, b \le 100$$$, $$$1 \le l \le 10^6$$$) — description of a test case.

Output

Output $$$t$$$ lines, with the $$$i$$$-th ($$$1 \le i \le t$$$) line containing an integer, the answer to the $$$i$$$-th test case.

Example
Input
11
2 5 20
2 5 21
4 6 48
2 3 72
3 5 75
2 2 1024
3 7 83349
100 100 1000000
7 3 2
2 6 6
17 3 632043
Output
6
1
5
12
6
11
24
4
1
3
24
Note

In the first test case, $$$a=2, b=5, l=20$$$. The possible values of $$$k$$$ (and corresponding $$$x,y$$$) are as follows:

  • Choose $$$k = 1, x = 2, y = 1$$$. Then $$$k \cdot a^x \cdot b^y = 1 \cdot 2^2 \cdot 5^1 = 20 = l$$$.
  • Choose $$$k = 2, x = 1, y = 1$$$. Then $$$k \cdot a^x \cdot b^y = 2 \cdot 2^1 \cdot 5^1 = 20 = l$$$.
  • Choose $$$k = 4, x = 0, y = 1$$$. Then $$$k \cdot a^x \cdot b^y = 4 \cdot 2^0 \cdot 5^1 = 20 = l$$$.
  • Choose $$$k = 5, x = 2, y = 0$$$. Then $$$k \cdot a^x \cdot b^y = 5 \cdot 2^2 \cdot 5^0 = 20 = l$$$.
  • Choose $$$k = 10, x = 1, y = 0$$$. Then $$$k \cdot a^x \cdot b^y = 10 \cdot 2^1 \cdot 5^0 = 20 = l$$$.
  • Choose $$$k = 20, x = 0, y = 0$$$. Then $$$k \cdot a^x \cdot b^y = 20 \cdot 2^0 \cdot 5^0 = 20 = l$$$.

In the second test case, $$$a=2, b=5, l=21$$$. Note that $$$l = 21$$$ is not divisible by either $$$a = 2$$$ or $$$b = 5$$$. Therefore, we can only set $$$x = 0, y = 0$$$, which corresponds to $$$k = 21$$$.

In the third test case, $$$a=4, b=6, l=48$$$. The possible values of $$$k$$$ (and corresponding $$$x,y$$$) are as follows:

  • Choose $$$k = 2, x = 1, y = 1$$$. Then $$$k \cdot a^x \cdot b^y = 2 \cdot 4^1 \cdot 6^1 = 48 = l$$$.
  • Choose $$$k = 3, x = 2, y = 0$$$. Then $$$k \cdot a^x \cdot b^y = 3 \cdot 4^2 \cdot 6^0 = 48 = l$$$.
  • Choose $$$k = 8, x = 0, y = 1$$$. Then $$$k \cdot a^x \cdot b^y = 8 \cdot 4^0 \cdot 6^1 = 48 = l$$$.
  • Choose $$$k = 12, x = 1, y = 0$$$. Then $$$k \cdot a^x \cdot b^y = 12 \cdot 4^1 \cdot 6^0 = 48 = l$$$.
  • Choose $$$k = 48, x = 0, y = 0$$$. Then $$$k \cdot a^x \cdot b^y = 48 \cdot 4^0 \cdot 6^0 = 48 = l$$$.