Fermat Theorem Combinatorics Proof

Правка en38, от ASHWANTH_K, 2024-08-14 00:51:19

Hello everyone,

I did like to give a brief overview of Fermat's theorem and its proof. There are various methods to prove Fermat's Little theorem, but I found the combinatorial approach to be the most straightforward and easy to understand. I'd like to discuss Fermat's theorem and its proof using combinatorics.

Fermat's Little Theorem

It states that given 2 integers $$$a$$$ , $$$p$$$ where $$$a > 1$$$ and $$$p$$$ is a prime, It follows that $$$a^{p-1} \equiv 1 \pmod{p}$$$

Example:

Say a = 2 , p = 5.
$$$a^{p-1} $$$
$$$ = 2^{5-1}$$$
$$$ = 2^4 = 16$$$
$$$ \equiv 1 \pmod{5}$$$

Proof (Combinatorics Approach)

The concept behind this proof is to approach it through a combinatorial problem and discover its solution, which indirectly verifies the theorem. Let's explore this straightforward combinatorial problem.

Problem

Consider a Necklace chain consisting of beads. There are $$$p$$$ beads in this chain. You are allowed to color each bead with $$$a$$$ possible colors available. The colors are available in infinite amounts, there is no other restriction on coloring. Find the number of ways to color these beads.

It can be easily shown that there are $$$a^p$$$ ways to color the beads to get different necklaces. (considering cyclic rotations as distinct). Every bead has $$$a$$$ options to be colored.

Consider a small variation to this problem, Among all possible $$$a^p$$$ permutations, Let's try to group them based on similar cyclic rotations. Two permutations are said to be equivalent if any of them can be generated from the cyclic rotation of the other.

For example, consider $$$a = 2, p = 3$$$. Let X and Y be the 2 possible colors available. Let's try to group these $$$2^3 = 8$$$ strings (all permutations) based on similar cyclic rotations. We get:

  • Group 1: XXX
  • Group 2: YYY
  • Group 3: XXY, XYX, YXX
  • Group 4: XYY, YYX, YXY

Here we get 4 different groups of sizes 1,1,3,3 each. Let's try to analyze these group sizes in-depth.

Periodicity of a String:

The periodicity of a string refers to the smallest length of a substring that, when repeated, forms the entire string. In other words, it's the minimum length of a substring that can be repeated periodically to recreate the original string.

Example
  • ABCABC has periodicity = 3 (ABC)
  • ABABAB has periodicity = 2 (AB)
Claim 1

The periodicity of a string is the same as its group size of similar cyclic rotations.

Explanation and Proof
Claim 2

The periodicity of a string, as well as its group size, are factors of the string's total length.

Explanation

From the above 2 claims, we can conclude that for the original problem (filling $$$p$$$ beads with $$$a$$$ colors) we get $$$a^p$$$ strings, and these strings have periodicity as $$$1$$$ or $$$p$$$. ($$$1$$$ and $$$p$$$ are the only factors of $$$p$$$ (prime)).

Example $$$a = 2, p = 3$$$
  • Group 1: XXX Periodicity = 1
  • Group 2: YYY Periodicity = 1
  • Group 3: XXY, XYX, YXX Periodicity = 3
  • Group 4: XYY, YYX, YXY Periodicity = 3

It can also be shown that among $$$a^p$$$ strings, there are only $$$a$$$ strings with periodicity as $$$1$$$. (Same color applied to all beads Example: Group 1: XXX, Group 2: YYY)

From the above statements we can conclude that the remaining strings $$$a^p - a$$$ have periodicity as $$$p$$$, which says that we can separate the remaining $$$a^p - a$$$ strings into groups of sizes $$$p$$$. This concludes that $$$a^p - a$$$ is a multiple of $$$p$$$. So

$$$a^p - a \equiv 0 \pmod{p}$$$
$$$a^p \equiv a \pmod{p}$$$
$$$a^{-1}*a^p \equiv a^{-1}*a \pmod{p}$$$
$$$a^{p-1} \equiv 1 \pmod{p}$$$

Thus, completing the proof.

References:

1) Wikepedia

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en42 Английский ASHWANTH_K 2024-08-14 07:15:35 6 Tiny change: ' \n\nThus, this comple' -> ' \n\nThis comple'
en41 Английский ASHWANTH_K 2024-08-14 07:15:05 110 Tiny change: 'ime and $a$ is any i' -> 'ime and $a > 1$ is any i'
en40 Английский ASHWANTH_K 2024-08-14 07:10:21 47 Tiny change: 'ons. \n\n<spoiler' -> 'ons. \n![ ](https://ibb.co/DrMDhmJ)\n<spoiler'
en39 Английский ASHWANTH_K 2024-08-14 00:55:29 258
en38 Английский ASHWANTH_K 2024-08-14 00:51:19 0 Tiny change: ' characters are repea' -> ' character are repea' (published)
en37 Английский ASHWANTH_K 2024-08-14 00:47:12 5 Tiny change: ' \n######References' -> ' \n##### References'
en36 Английский ASHWANTH_K 2024-08-14 00:43:01 18
en35 Английский ASHWANTH_K 2024-08-14 00:40:07 33 Tiny change: ' \n\nReferenc' -> ' \n\nThus, completing the proof. \nReferenc'
en34 Английский ASHWANTH_K 2024-08-14 00:39:37 1091 Tiny change: 'xplanation and Proof">\nLet's ' -> 'xplanation">\nLet's '
en33 Английский ASHWANTH_K 2024-08-14 00:20:03 1135 Tiny change: 'inal form.`\n######Pr' -> 'inal form.\n######Pr'
en32 Английский ASHWANTH_K 2024-08-14 00:09:51 866
en31 Английский ASHWANTH_K 2024-08-13 23:06:19 223
en30 Английский ASHWANTH_K 2024-08-13 23:03:50 90
en29 Английский ASHWANTH_K 2024-08-13 23:01:52 327 Tiny change: 'YYX, YXY \n- \n\n\nRefere' -> 'YYX, YXY \n\nRefere'
en28 Английский ASHWANTH_K 2024-08-13 22:43:22 139
en27 Английский ASHWANTH_K 2024-08-13 22:41:17 4 Tiny change: 'consider $A = 2, P = 3$ ' -> 'consider $a = 2, p = 3$ '
en26 Английский ASHWANTH_K 2024-08-13 22:40:58 264
en25 Английский ASHWANTH_K 2024-08-13 22:35:30 74
en24 Английский ASHWANTH_K 2024-08-13 22:31:20 45
en23 Английский ASHWANTH_K 2024-08-13 22:30:11 15
en22 Английский ASHWANTH_K 2024-08-13 22:28:39 416 Tiny change: ' $ = 2^4$ \n $ = 16$ ' -> ' $ = 2^4 = 16$ '
en21 Английский ASHWANTH_K 2024-08-13 22:19:00 8 Tiny change: 'mple:\n Say a =' -> 'mple:\n Say a ='
en20 Английский ASHWANTH_K 2024-08-13 22:18:44 9
en19 Английский ASHWANTH_K 2024-08-13 22:18:19 101
en18 Английский ASHWANTH_K 2024-08-13 22:16:33 13 Tiny change: 'e Theorem:\n- States that' -> 'e Theorem: \n It states that'
en17 Английский ASHWANTH_K 2024-08-13 22:16:12 3
en16 Английский ASHWANTH_K 2024-08-13 22:16:00 44
en15 Английский ASHWANTH_K 2024-08-13 22:15:40 48
en14 Английский ASHWANTH_K 2024-08-13 22:15:24 38
en13 Английский ASHWANTH_K 2024-08-13 22:15:00 346
en12 Английский ASHWANTH_K 2024-08-13 22:09:27 2 Tiny change: 'v 1 \pmod{n}$ \n\n' -> 'v 1 \pmod{p}$ \n\n'
en11 Английский ASHWANTH_K 2024-08-13 22:09:16 11 Tiny change: ' \equiv 1 mod p$ \n\n\' -> ' \equiv 1 \pmod{n}$ \n\n\'
en10 Английский ASHWANTH_K 2024-08-13 22:08:23 8 Tiny change: ' $a^{p-1} = 1 mod ' -> ' $a^{p-1} \equiv 1 mod '
en9 Английский ASHWANTH_K 2024-08-13 22:07:51 4 Tiny change: '{p-1} = 1 mod p$ \n\' -> '{p-1} = 1 mod p$ \n\'
en8 Английский ASHWANTH_K 2024-08-13 22:07:38 10
en7 Английский ASHWANTH_K 2024-08-13 22:07:05 9 Tiny change: 'orem: \n &mdash; States th' -> 'orem: \n- States th'
en6 Английский ASHWANTH_K 2024-08-13 22:06:55 0 Tiny change: 'rem: \n &mdash; States th' -> 'rem: \n - States th'
en5 Английский ASHWANTH_K 2024-08-13 22:06:41 8 Tiny change: 'rem: \n States th' -> 'rem: \n - States th'
en4 Английский ASHWANTH_K 2024-08-13 22:06:24 136
en3 Английский ASHWANTH_K 2024-08-13 22:04:56 10
en2 Английский ASHWANTH_K 2024-08-13 22:04:27 287
en1 Английский ASHWANTH_K 2024-08-13 22:00:23 307 Initial revision (saved to drafts)