Given a sequence $$$( A )$$$ , where each element $$$( A_i )$$$ is a randomly chosen integer from $$$( 0 )$$$ to $$$( 2^k - 1 )$$$ , what is the probability that there exists a subsequence of $$$( A )$$$ whose XOR sum is equal to $$$0$$$ ?
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 170 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 160 |
5 | djm03178 | 158 |
5 | -is-this-fft- | 158 |
7 | adamant | 154 |
7 | Dominater069 | 154 |
9 | awoo | 153 |
10 | luogu_official | 152 |
I have a problem
Given a sequence $$$( A )$$$ , where each element $$$( A_i )$$$ is a randomly chosen integer from $$$( 0 )$$$ to $$$( 2^k - 1 )$$$ , what is the probability that there exists a subsequence of $$$( A )$$$ whose XOR sum is equal to $$$0$$$ ?
Name |
---|