Codeforces Round #317 [AimFund Thanks-Round] Editorial
Difference between en5 and en6, changed 2589 character(s)
We hope you enjoyed our problems :) Unfortunately, we haven't got a lot of time to prepare editorials before the contest, because almost all the authors are participating in the training camp in Petrozavodsk. We're working on editorials now, other problems will be added as soon as possible =)↵

[problem:572A]↵

In this problem one need to check whether it's possible to choose $k$ elements from array $A$ and $m$ elements from array $B$ so that each of chosen element in $A$ is less than each of chosen elements in $B$. If it's possible then it's possible to choose $k$ smallest elements in $A$ and $m$ largest elements in $B$. That means that in particular, $k$-th smallest element of $A$ is less than $m$-th largest element in $B$. So, if $A[k] < B[n - m + 1]$ then the answer is "YES" and if not, then the answer is "NO".↵

Problem author: [user:zeliboba,2015-08-22].↵

Problem developers: [user:AlexDmitriev,2015-08-22], [user:Kostroma,2015-08-22].↵

[problem:572B]↵

First of all the problem may be solved for buy orders and sell orders separately.↵

The easiest soultion is to use structure like std::map or java.lang.TreeMap.↵
To aggregate orders we just add volume to the corresponding map element: `aggregated[price] += volume`.↵

After that we should extract lowest (or largest) element from map $s$ times (or while it's not empty).↵

Complexity of this solution is $O(n log n)$.↵

It is also possible to solve the problem without data structres other than an array. You should just maintain at most $s$ best orders in sorted order and when adding another order you insert it in appropriate place and move worse elements in linear time of $s$. Complexity of this solution is $O(sn)$.↵

Problem authors and developers: [user:ArtDitel,2015-08-23], [user:yarrr,2015-08-23].↵

[problem:571A]↵

Let's count the number of ways to form a triple which can't represent triangle sides, and then we subtract this value from $C_{l+3}^{3} = \frac{(l+1)(l+2)(l+3)}{6}$ &mdash; the total number of ways to increase the sticks not more than $l$ in total. This number is obtained from partition of $l$ into 4 summands ($l_a + l_b + l_c + unused_l = l$), or can be counted using a `for` loop.   ↵

Now we consider triples $a + l_a, b + l_b, c + l_c$, where $l_a + l_b + l_c \le l, l_a, l_b, l_c \ge 0$. Fix the maximal side, for example it would be $a + l_a$. We'll have to do the following algo for $b + l_b$ and $c + l_c$ in the same way. The triple is not a triangle with maximal side $a + l_a$ if $a + l_a \ge b + l_b + c + l_c$. If we iterate over $l_a$ between $0$ and $l$, we have the following conditions on $l_b, l_c$:↵
$$l_b + l_c \le a - b - c + l_a,$$↵
$$l_b + l_c \le l - l_a,$$↵
$l_b, l_c \ge 0.$↵
So, non-negative integers $l_b, l_c$ should be such that $l_b + l_c \le min(a - b - c + l_a, l - l_a)$. If we denote this minimum as $x$ than we can choose $l_b, l_c$ in $\frac{(x+1)(x+2)}{2}$ different ways (again we divide $x$ into three summands: $l_b, l_c$ and some unused volume). Also when we fix $l_b$, there are $x - l_b + 1$ ways to choose $l_c$, so the overall number of pair $l_b, l_c$ is↵
$$\sum\limits_{l_b=0}^{x}(x - l_b + 1) = \sum\limits_{a=1}^{x+1}a = \frac{(x+1)(x+2)}{2},$$↵
so we obtain the same formula.↵

To sum up, we need to iterate over the maximal side and over the addition to that side, then write these formulas, and subtract the result from the total number of different additions to the sides. The complexity of the solution is $O(l)$.↵

Problem author: [user:Kostroma,2015-08-22].↵

Problem developers: [user:Kostroma,2015-08-22], [user:AlexDmitriev,2015-08-22].↵

[problem:571B]↵

We can divide all indices $[1;n]$ into groups by their remainder modulo $k$. While counting $\sum\limits_{i=1}^{n-k}|a_i - a_{i+k}|$, we can consider each group separately and sum the distances between neighbouring numbers in each group. ↵

Consider one group, corresponding to some remainder $i$ modulo $k$, i.e. containing $a_j$ for $j \equiv i \mod(k)$. Let's write down its numbers from left to right: $b_1, b_2, \ldots, b_m$. Then this group adds to the overall sum the value↵
$$\sum\limits_{j=1}^{m-1} |b_j - b_{j+1}|.$$↵
We can notice that if we sort $b_1, \ldots, b_m$ in non-decreasing order, this sum will not increase. So, in the optimal answer we can consider that numbers in each group don't decrease. Furthermore, in that case this sum is equal to $|b_m - b_1|$.↵

Now consider two groups $b_1, \ldots, b_m$ and $c_1, c_2, \ldots, c_l$, both sorted in non-decreasing order. We claim that either $b_1 \ge c_l$ or $b_m \le c_1$, i.e. segments $[b_1, b_m]$ and $[c_1, c_l]$ can have common points only in their endpoints.↵

Why is this true? These groups add $|b_m - b_1| + |c_l - c_1|$ to the overall sum. We consider the case $c_1 \ge b_1$, the other is symmetric. If $c_1 < b_m$, then swapping $c_1$ and $b_m$ will not increase the values these groups add to the answer, since the right border of $b$ group moves to the left, and the left border of $c$ group moves to the right. So, $c_1 \ge b_m$ in that case, and the assertion is proved.↵

Now we know that the values in each group should from a continuous segment of the sorted original array. In fact, we have $k - (n \mod k)$ groups of size $\frac{n}{k}$ (so called small groups) and $(n \mod k)$ groups of size $(\frac{n}{k} + 1)$ (so called large groups). Consider the following dynamic programming: $dp[L][S]$ &mdash; the minimal sum of values added to the answer by $L$ large groups and $S$ small groups, if we choose the elements for them from the first $L \cdot (\frac{n}{k} + 1) + S \cdot \frac{n}{k}$ elements of the sorted array $A$. There are no more than $O(k^2)$ states, and each transition can be made in $O(1)$: we choose large or small group to add and obtain the number it adds to the sum by subtracting two elements of the sorted array. The answer for the problem will be in $dp[(n \mod k)][k - (n \mod k)]$.↵

The overall complexity of the solution is $O(n \log{n} + k^2)$. We can note that in pretests $(n \mod k)$ was quite small, and some slower solutions could pass, but they failed on final tests.↵

Problem author: [user:zeliboba,2015-08-23].↵

Problem developers: [user:Kostroma,2015-08-22], [user:AlexDmitriev,2015-08-22].↵

[problem:571C]↵

Firstly let's assign values to variables occurring in our fomula only with negation or only without negation. After that we can throw away the disjuncts which contained them, since they are already true, and continue the process until it is possible. To make it run in time limit, one should use dfs or bfs algorithm to eliminate these variables and disjuncts.↵

So now we have only variables which have both types of occurrences in disjucnts. Let's build a graph with the vertices corresponding to disjuncts, and for each varible $a$ make an edge between the disjuncts that contain $a$ and $!a$. Now we should choose the directions of edges in this graph in such a way that every vertex has at least one incoming edge. ↵

We can notice that if some connected component of this graph is a tree, the solution is not possible: on each step we can take some leaf of this tree, and we have to orient its only edge to it, and then erase the leaf. In the end we'll have only one vertex, and it'll not have any incoming edges.↵

Otherwise, take some cycle in the component and orient the edges between neighbouring vertices along it. Then run dfs from every vertex of the cycle and orient each visited edge in the direction we went along it. It is easy to easy that after this process every vertex will have at least one incoming edge.↵

So, we should consider cases with the variables which values can be assigned at once, than construct a graph from disjuncts and variables and find whether each connected component has a cycle. If so, we also should carefully construct the answer, assigning the remaining variables their values, looking at the directions of the edges in the graph. The overall complexity is $O(n + m)$.↵

Problem author: [user:zeliboba,2015-08-22].↵

Problem developers: [user:Kostroma,2015-08-22], [user:zeliboba,2015-08-22], [user:yarrr,2015-08-22].↵

[problem:571D]↵

Coming tomorrow :)Let's suppose for each dormitory from $Q$ query we already know the last raid moment.↵

When task will be much easier: we can throw away $M$ and $Z$ queries and to get right answer we should subtract two values:↵
people count in dormitory right now and same count in a last raid moment.↵

On this basis, we have such plan:↵

1. For each $Q$ query let's find the last raid moment using $M$ and $Z$ queries.↵
2. Find people count in two interesting moments using $U$ and $A$ queries.↵
3. Calculcates the final answer.↵


Let's try to solve the first part.↵

We want to make such queries on disjoint sets:↵

1. Merge two sets ($M$ query).↵
2. Assign value $time$ for all elements in particular set ($Z$ query).↵
3. Get value for a particular element ($Q$ query).↵

To solve this task we'll use a well-known technique: "merge smaller set to bigger".↵

We'll maintain such values:↵

* $elements$ &mdash; set elements.↵
* $set\_id$ &mdash; for each element their set id.↵
* $last\_set\_update\_time$ &mdash; last moment when assign operation has occurred for each set.↵
* $last\_update\_time$ &mdash; last moment when assign operation has occurred for each element.↵
* $actual\_time$ &mdash;  moment of time when $last\_update\_time$ was actually for the element.↵

Let's focus on $actual\_time$ value.↵

It's obvious that when we merge two sets each element can have a different last assign moment.↵
But after first assignment all elements from any set will have the same value.↵
So the answer for $Q$ query for element $i$ from set $s$:↵
$$If\ last\_set\_update\_time[s]=actual\_time[i]\ then\ last\_update\_time[i]\ else\ last\_set\_update\_time[s]$$↵

For each $Z$ query you should just update $last\_set\_update\_time$ array.↵

It's easy to maintain this values when you merge two sets:↵

Let's suppose we want to merge set $from$ to set $to$.↵
For each element from set $from$ we already know last assign time.↵
So just update $last\_update\_time$ with this value and $actual\_time$ is equal of last assign operation for set $to$.↵

The second part of the solution is the same as first one.↵

$O(n * lg(n) + m)$ time and $O(n + m)$ memory.↵

Problem author: [user:ArtDitel,2015-08-24].↵

Problem developers: [user:yarrr,2015-08-24], [user:gchebanov,2015-08-24], [user:Kostroma,2015-08-24].↵


[problem:571E]↵

If intersection of two geometric progressions is not empty, set of common elements indexes forms arithmetic progression in each progression or consists of not more than one element. Let's intersect first progression with each other progression. If any of these intersections are empty then total intersection is empty. If some of these intersection consist of one element, then we could check only this element. Otherwise one could intersect arithmetic progressions of first progression indexes and take minimal element of this intersection. The remaining question is how intersect two geometric progression? Let's factorise all numbers in these two progressions and find set of appropriate indexes for every prime factor in both progressions. These progressions one need intersect both by values and by indexes.↵


Problem author: [user:zeliboba,2015-08-23].↵

Problem developers: [user:zeliboba,2015-08-23], [user:yarrr,2015-08-23], [user:gchebanov,2015-08-23].

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en8 English Kostroma 2015-09-06 17:15:38 473 Tiny change: '8-22].\n\n[probl' -
en7 English Kostroma 2015-08-25 02:04:38 33
en6 English Kostroma 2015-08-24 20:45:59 2589 Tiny change: 'ch plan:\n1. For e' -
en5 English Kostroma 2015-08-23 08:27:15 4 Tiny change: 'c{(l+1)(l+1)(l+2)}{6}$ &md' -> 'c{(l+1)(l+2)(l+3)}{6}$ &md'
en4 English Kostroma 2015-08-23 00:57:19 1757
en3 English Kostroma 2015-08-23 00:19:03 173
en2 English Kostroma 2015-08-23 00:14:12 2650 Tiny change: 'n\nComing soon.\n\n[probl' -> 'n\nComing tomorrow :)\n\n[probl'
en1 English Kostroma 2015-08-22 23:24:58 4692 Initial revision (published)