How to solve this problem using matrix exponentiation. The recurrence relation is :
f(n, k, 0) = 2 * f(n - 1, k, 1) + f(n - 1, k, 0)
f(n, k, 1) = f(n - 1, k, 1) + f(n - 1, k, 0)
1 < n < 1e9
1 < k < 1e3
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 166 |
2 | maomao90 | 163 |
2 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
Problem BBRICKS from Codechef Long challenge
How to solve this problem using matrix exponentiation. The recurrence relation is :
f(n, k, 0) = 2 * f(n - 1, k, 1) + f(n - 1, k, 0)
f(n, k, 1) = f(n - 1, k, 1) + f(n - 1, k, 0)
1 < n < 1e9
1 < k < 1e3
Name |
---|