Codeforces and Polygon may be unavailable from December 6, 19:00 (UTC) to December 6, 21:00 (UTC) due to technical maintenance. ×

A property of triangulation
Difference between en1 and en2, changed 14 character(s)
"In a triangulation of a regular n$n$-gon, there always exists a diagonal that divides the polygon into 2 small polygons and the smaller one has at least $O(n/3)\frac{n}{3})$ vertices."↵

I saw this property in the NEERC 2014's editorial but still cannot prove it. Can anyone help me? Thank you!

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en2 English cuom1999 2019-01-11 02:28:39 14 Tiny change: ' at least O(n/3) vertices.' -> ' at least $O(\frac{n}{3})$ vertices.' (published)
en1 English cuom1999 2019-01-11 02:27:51 306 Initial revision (saved to drafts)