Solving problem in Field Extension
Разница между en23 и en24, 44 символ(ов) изменены
Hello Codeforcers!↵

I'd like to demonstrate an application of Extended Field. ↵
Sometimes a problem may be easier to solve if a (hidden or not) polynomial can be decomposed into product of linear terms. (Most of the time it's not the solution of tutorial.) In this case, we can try to extend the field to solve the problem.↵






Extended Field↵
==========================↵

The idea↵
--------↵

First we should include the idea of splitting field, **a splitting field $F$ of a (may assumed) monic polynomial $P$ is the smallest field such that**↵
$$↵
P(x) = \prod_{i}(x - x_i), x_i \in F↵
$$↵
I use the word "smallest" with the sense that if $P$ split over $E$, $F \subset E$.↵

In the other word, P decomposes into linear factor under its splitting field.↵


In most of the problems, we need not to find the exact splitting field... Just a field that $P$ split over it is enough.↵








Example↵
-------↵

1. $P = x^2 + 1$ does not split over $\mathbb{Q}$ but split over $\mathbb{Q}(i)$ where ↵
$\mathbb{Q}(i) = \{a + bi | a, b \in \mathbb{Q} \}$ which is widely used as complex.↵

2. Let $p = 998244353 = 7 * 17 * 2^23 + 1$, $P = x^{2^{24}} - 1$ does not split over $\mathbb{Z}_p$ but split over $\mathbb{Z}_p(w)= \{a + bw | a, b \in \mathbb{Q} \}$ where $w \notin \mathbb{Z}_p, w^2 \in \mathbb{Z}_p$. The multiplication order $ord(w^2) = 2^23$.↵

3. Let $p = 10^9 + 7$, Fibonacci number can be easily written as $f_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$. where $\phi, \psi$ (the [golden ratio](https://en.wikipedia.org/wiki/Golden_ratio) and it's conjugate) are both root of $x^2 - x - 1 = 0$. The splitting field is $\mathbb{Z}_p(w)= \{a + bw | a, b \in \mathbb{Z}_p, w^2 = 5\}$ (Remark that $x^2 = 5$ has no root in $Z_p$)↵


Problem Solving↵
===============↵


[problem:718C]↵
--------------↵
The problem to be demonstrated corresponds to the third example. This may be not the best solution for the problem. I've got several TL on this problem for large constant on module. But I do think that it's a nice try to solve some problems in different way :)↵

The problem contains several operations:↵

- shift all element of a segment to the next $x$ Fibonacci term.↵
- query for the sum of an segment↵

In the problem, we can handle Fibonacci number $1, 1, 2, 3, 5, 8, \cdots$ with the formula ↵
$f_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$. Once we have decomposed the Fibonacci into two sequence of number powers. The problem becomes easier:↵

- multiply a segment by $\phi^x$ and $\psi^x$ ↵
- query for the sum of an segment↵

It can be easily handled by two segment tree.↵


### Implementation↵

We can implement Extended Field using C++ class, just like complex:↵

~~~~~↵
template<int sq = 5, int MOD = 1000000007>↵
class EX {↵
  int re, im;↵
  static int trim(int a) {↵
    if (a >= MOD) a -= MOD;↵
    if (a < 0) a += MOD;↵
    return a;↵
  }↵
  static int inv(const int a) {↵
    int ans = 1;↵
    for (int cur = a, p = MOD - 2; p; p >>= 1, cur = 1ll * cur * cur % MOD) {↵
      if (p&1) ans = 1ll * ans * cur % MOD;↵
    }↵
    return ans;↵
  };↵
public:↵
  EX(int re = 0, int im = 0) : re(re), im(im) {}↵
  EX& operator=(EX oth) { return re = oth.re, im = oth.im, *this; }↵
  int norm() const { ↵
    return trim((1ll * re * re - 1ll * sq * im % MOD * im) % MOD);↵
  }↵
  EX conj() const { ↵
    return EX(re, trim(MOD - im)); ↵
  }↵
  EX operator*(EX oth) const {↵
    return EX((1ll * re * oth.re + 1ll * sq * im % MOD * oth.im) % MOD,↵
              (1ll * re * oth.im + 1ll * im * oth.re) % MOD);↵
  };↵
  EX operator/(int n) const { ↵
    return EX(1ll * re * inv(n) % MOD, 1ll * im * inv(n) % MOD);↵
  }↵
  EX operator/(EX oth) const { return *this * oth.conj() / oth.norm(); }↵
  EX operator+(EX oth) const { return EX(trim(re + oth.re), trim(im + oth.im)); }↵
  EX operator-(EX oth) const {↵
    return EX(trim(re - oth.re), trim(im - oth.im));↵
  }↵
  EX pow(long long n) const {↵
    EX ans(1);↵
    for (EX a = *this; n; n >>= 1, a = a * a) {↵
      if (n&1) ans = a * ans;↵
    }↵
    return ans;↵
  }↵
  bool operator==(EX oth) const { return re == oth.re and im == oth.im; }↵
  bool operator!=(EX oth) const { return not (*this == oth); }↵
  int real() const& { return re; }↵
  int imag() const& { return im; }↵
};↵
~~~~~↵
My submission: [submission:54522918]↵


FFT↵
---↵
As the second example, since FFT need a root such that $x^{2^n} - 1 = 0$, the idea may be a nice approach for implementing FFT on arbitrary module. Yet I haven't found an efficient way to 
construct such an extended fieldextend such arbitrary field $\mathbb{Z}_p$.

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en26 Английский rareone0602 2019-05-23 19:14:45 1
en25 Английский rareone0602 2019-05-23 19:08:03 0 (published)
en24 Английский rareone0602 2019-05-23 19:06:10 44
en23 Английский rareone0602 2019-05-23 18:51:14 36 Tiny change: ';\n~~~~~\n\n\n\nFFT\' -> ';\n~~~~~\nMy submission: [submission:54522918]\n\n\nFFT\'
en22 Английский rareone0602 2019-05-23 18:49:59 25 Tiny change: 'FFT\n---\nSince FFT n' -> 'FFT\n---\nAs the second example, since FFT n'
en21 Английский rareone0602 2019-05-23 18:46:39 127
en20 Английский rareone0602 2019-05-23 18:35:23 274
en19 Английский rareone0602 2019-05-23 18:18:10 366
en18 Английский rareone0602 2019-05-23 17:55:11 122
en17 Английский rareone0602 2019-05-23 17:51:33 21
en16 Английский rareone0602 2019-05-23 17:49:48 634
en15 Английский rareone0602 2019-05-23 17:34:23 2031
en14 Английский rareone0602 2019-05-23 17:20:18 104
en13 Английский rareone0602 2019-05-23 17:14:46 235
en12 Английский rareone0602 2019-05-23 17:08:27 3
en11 Английский rareone0602 2019-05-23 17:07:40 147
en10 Английский rareone0602 2019-05-23 16:56:31 92
en9 Английский rareone0602 2019-05-23 16:52:53 26
en8 Английский rareone0602 2019-05-23 16:50:39 95
en7 Английский rareone0602 2019-05-23 16:48:39 362
en6 Английский rareone0602 2019-05-23 16:32:08 114
en5 Английский rareone0602 2019-05-23 16:28:30 94
en4 Английский rareone0602 2019-05-23 16:25:27 373
en3 Английский rareone0602 2019-05-23 00:54:58 38
en2 Английский rareone0602 2019-02-03 13:05:57 36
en1 Английский rareone0602 2019-02-03 05:10:44 163 Initial revision (saved to drafts)