There are some functions $$$T_y$$$, which are defined as:
- $$$\forall j\le 1,y\in (0,1):T_y(j):=1$$$
- $$$\forall y\in (0,1):T_y(x):=T_y(xy)+T_y(x-xy)+1$$$
Find $$$y$$$ (s) so that the order of $$$\lim_{x\rightarrow+\infty}T_y(x)$$$ is minimized.
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
There are some functions $$$T_y$$$, which are defined as:
Find $$$y$$$ (s) so that the order of $$$\lim_{x\rightarrow+\infty}T_y(x)$$$ is minimized.
Name |
---|
There is a bug in my latex , cannot figure it out , btw , if I'm not wrong, it's about caring only about second part since we're looking at limit of $$$\infty$$$ , by doing some equations , you should get $$$f_i(x)=-1$$$ for $$$1 < x < \infty$$$ that works ,and that's probably the minimum.
what are the equationgs
does your $$$i$$$ mean the imaginary unit
$$$x,y,j\in\mathbb{R}$$$ here
I solved in integers , in this case my solution is almost wrong.