Can some one tell me how to solve this problem ?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Can some one tell me how to solve this problem ?
Название |
---|
We iterate through the number i. Let us learn in O (1) to understand for some of the smallest substring j b [0 ... n - i - 1] can be represented as a [i 1 ... j - 1] r (a [j. .. n - 1]). To do this, calculate the prefix function (p [i]) for the string s1 = r (a) '\ 0' b and the z-function (z [i]) for the string s2 = b '\ 0' a. It is clear that for fixed i, j is the required value will be n - p [2n - i - 1], with the substring a [i 1 ... j - 1] and b [0 .. j - i] must be the same (1). The last statement is easily verified, using the calculated z-function. Is also trivial proof of the fact that if a fixed i the property (1) does not hold for the chosen j, then it will fail for large j.
The asymptotic complexity of the solution - O (n).