Problem Link: http://www.spoj.com/problems/NUMTSN/
My solution: http://ideone.com/7fKLqx
Any help is really appreciated.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Problem Link: http://www.spoj.com/problems/NUMTSN/
My solution: http://ideone.com/7fKLqx
Any help is really appreciated.
Название |
---|
Here's my code.
A common trick for multi-test problems: if you reverse the direction of your DP (such that DP[...] is in how many ways you can finish the number if your current state is [...]), then the value of states with sa=sb=1 does not depend on either A or B. This allows you to precompute the value of those states for all test cases, and for a specific case you only need to care about states with sa or sb equal to 0 (which should be very few).
Sometimes (and in this specific problem), formulating the DP in reverse should also allow you to find a faster solution for the single-test case.
can you explain this trick more?