how to calculate a^b%mod where b is very much larger than mod
can we do b = b%mod???
e.g. mod = 1000000007
a = 2 b = 1134903170 after this can we do b = 1134903170%mod
# | User | Rating |
---|---|---|
1 | jiangly | 3977 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3483 |
8 | hos.lyric | 3381 |
9 | gamegame | 3374 |
10 | heuristica | 3358 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 162 |
3 | Um_nik | 161 |
4 | atcoder_official | 160 |
5 | djm03178 | 157 |
5 | Dominater069 | 157 |
7 | adamant | 154 |
8 | luogu_official | 152 |
8 | awoo | 152 |
10 | TheScrasse | 148 |
how to calculate a^b%mod where b is very much larger than mod
can we do b = b%mod???
e.g. mod = 1000000007
a = 2 b = 1134903170 after this can we do b = 1134903170%mod
Name |
---|
You can do b = b % phi(mod)
(euler totient function)
Well, first of all, for your example you can always just do fast exponentiation, in O(log b) multiplications. If b is even, then ab = (ab / 2)2, otherwise ab = ab - 1·a. Though I never implement it recursively, but iteratively (C++):
The modding is covered in the
mul
function.But to answer your question, yes you can reduce b. If b is greater than φ(mod), then you can reduce b to b%φ(mod) + φ(mod). If you knew that a is relatively prime to mod then you wouldn't need the + φ(mod), but in the general case it wouldn't work without + φ(mod) (for example, a = 2, mod = 220, b = φ(mod) = 219, the solution is 0). φ(x) is the Euler totient function.