Блог пользователя adzo261

Автор adzo261, история, 6 лет назад, По-английски

In normal Nim game, the player taking the last object wins.
And terminal position here is always a P -position.
Now, I have a question where you are given the terminal P and N positions unlike the only terminal condition in normal Nim.
Is this a variation of Nim? If yes, how to analyze it, how should I go about assigning grundy numbers?

Formally:
I have n heaps with represented by a set S={a1,a2,a3, .... an}.
And, I have a set T which gives terminal positions and tell whether it is a P-position or N-position.
One element of the set can be {{k1,k2,k3, .... kn},P}
where,
k1<=a1
k2<=a2
k3<=a3
.
.
kn<=an

It means the set {k1,k2,k3, .... kn} is a terminal position.
And, the second parameter denotes either 'P' or 'N' as P-position or N-position.

Can this be made equivalent to Nim?
How to analyze this?

  • Проголосовать: нравится
  • +3
  • Проголосовать: не нравится

»
6 лет назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

This works in exactly the same way. The rules for P and N-positions are:

  • If you can reach a P-position in one move, then this position is a N-position.
  • If all positions that you can reach are N-positions, then this position is a P-position.

You can start analyzing the game in the opposite direction. Take any known P-position, and mark all position that can reach this position with N. Do this with all P-positions. Also check the positions that can reach the N-positions. Once you find a position that can only reach N-positions, mark it with P. Do this procedure as long as possible.

If there are still some positions left, that don't are P or N positions, then this position is neither winning or loosing. I.e. the game will end in a draw. E.g. this is possible if there is a loop in the game, which means you can visit the same position multiple times.