How to efficiently calculate the value of $$$ \frac{3^{n}-1}{2} $$$ modulo an even number $$$ p $$$, when the bound on $$$ n $$$ is up to $$$ 10^{18} $$$ and $$$ p $$$ is up to $$$ 10^9 $$$?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3831 |
3 | Radewoosh | 3646 |
4 | jqdai0815 | 3620 |
4 | Benq | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | gamegame | 3386 |
10 | ksun48 | 3373 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 160 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
How to efficiently calculate the value of $$$ \frac{3^{n}-1}{2} $$$ modulo an even number $$$ p $$$, when the bound on $$$ n $$$ is up to $$$ 10^{18} $$$ and $$$ p $$$ is up to $$$ 10^9 $$$?
Название |
---|
If
is odd,
is odd, else it is even.
If $$$ka = kb \text{ (mod } km)$$$, then $$$a = b \text{ (mod } m)$$$.
Thus, you can compute $$$x \text{ (mod } 2p)$$$ and then divide by 2 to get $$$x/2 \text{ (mod } p)$$$ (in this example, $$$x = 3^n-1$$$).
Thanks