Блог пользователя 514977059

Автор 514977059, история, 5 лет назад, По-английски

Hi, I'm stuck on this problem, but I'm unable to find a solution which I could understand. Can someone explain it to me

  • Проголосовать: нравится
  • +1
  • Проголосовать: не нравится

»
5 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится
»
5 лет назад, # |
  Проголосовать: нравится +7 Проголосовать: не нравится

For a divisor d, d can appear floor(n, d) times as divisor of all number 1-n. E.g. n=100, d=2 then 2 can appear 50 times as divisor

We also know that every divisor from (floor(n, d+1)+1, floor(n, d)) can appear d times. E.g. n=100, d=2 then every divisor from (34, 50) can appear 2 times.

Can you see O(sqrt(n)) approach from this?

»
5 лет назад, # |
Rev. 2   Проголосовать: нравится +10 Проголосовать: не нравится

We can see that the sum is equivalent to

$$$\sum_{i} \lfloor\dfrac{n}{i}\rfloor * i$$$

It's easy to see that

$$$\lfloor\dfrac{n}{i}\rfloor$$$

has only O(sqrt(N)) distinct values, so we can group together ranges that has the same division value and use A.P sum.

  • »
    »
    5 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

    In case you're wondering why the sum has only $$$O(\sqrt{n})$$$ distinct values:

    There are 2 cases for $$$\left \lfloor{\frac{n}{i}}\right \rfloor$$$.

    1. $$$i \leq \sqrt{n}$$$. There are only $$$\sqrt{n}$$$ such values.
    2. $$$i > \sqrt{n}$$$. In this case, $$$\left \lfloor{\frac{n}{i}}\right \rfloor < \sqrt{n}$$$, so there are at most $$$\sqrt{n}$$$ distinct values.

    In total, we have at most $$$2 \cdot \sqrt{n} = O(\sqrt{n})$$$ distinct values.

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
"""
Well there is a simple O(n) method to do this problem. It is shown in the
below python code.

n = int(input()); ans = 0;
for i in range(1, n+1):
    ans += i * (n // i);
print(ans);

But we need to solve this problem in O(sqrt N) to pass the test cases.
So this is kinda hack. For the first half of the (sqrt N) values we will use
different technique, and use O(n) solution for the rest remaining half.
"""

M = 10**9+7
## AP Summation Formulae; 
def summation(l, r):
    n = r - l + 1
    return n * ( l + r) // 2;

## First Part;
n = int(input()); ans = 0;
i = 1; minVal = n
while( i*i <= n):
    l = n // (i + 1); r = n // i
    if(l >= r):
        continue
    ans+= i * (summation(l + 1, r))
    minVal = l
    ans %= M;
    i += 1;

## Second Part;
for i in range(1, minVal + 1):
    ans += i * (n // i)
    ans %= M;
 
print(ans % M);