Can someone help me how to solve this question https://acm.timus.ru/problem.aspx?space=1&num=1918
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 163 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
5 | Dominater069 | 157 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 148 |
Can someone help me how to solve this question https://acm.timus.ru/problem.aspx?space=1&num=1918
Name |
---|
Untested solution : We can see that for each $$$i$$$ we can go to some $$$j$$$ or $$$i-1$$$ using the handles. Now let $$$dp_{i,j}$$$ denote a way to position the first $$$i$$$ handles in a way such that you can reach $$$j$$$. Notice that if $$$j$$$ is reachable, all values below $$$j$$$ are also reachable.
This means at least one handle is at the $$$jth$$$ position, and none are at a larger position. Now we can see that $$$dp_{i,j} = dp_{i-1,j}\times j + \sum_{k=0}^{j-1} dp_{i-1,k}$$$.
The first term is for $$$j$$$ being reachable from before and the second term is setting the $$$ith$$$ handle to $$$j$$$ so that $$$j$$$ is now reachable. This can be computed in $$$O(n^2)$$$ by using prefix sums.
The base term is $$$dp_{0,1} = 1$$$ and the rest are $$$0$$$.
Thanks... understood
:0