Knowing the fact that 1D Fenwick Trees can be built in linear time, I am assuming that the 2D version can be built in quadratic time. I didn't manage to find anything about this. Can you help me with some links/ideas?
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Knowing the fact that 1D Fenwick Trees can be built in linear time, I am assuming that the 2D version can be built in quadratic time. I didn't manage to find anything about this. Can you help me with some links/ideas?
Name |
---|
For every updation in linear Fenwick tree we require O(log N ) time complexity.It takes Nlog(N) for linear or 1-D. sebi420p How can we built in just O(N) .
Actually, we can build a bit in O(n). Every index in a bit indicates the sum of the range [i — lowbit(i), i]. So, if you build a prefix sum array beforehand, you can use it to build the bit in O(n).
You can check this link
Thanks, that's a better way to build a bit.
Thank you!
Why is he downvoted, it's a good question.
I was wondering that too..
okwedook Thank you.