Searching for a pattern

Правка en4, от brezhart, 2022-03-09 22:29:51

Im working on this problem: Given $$$n$$$ and $$$c$$$, How many sequences $$$A$$$ of length $$$n$$$ satisfy the following conditions:

  • $$$1\leq a_{i} \leq c$$$
  • $$$\forall i \in {1,2,\ldots,n-1}: a_{i} | a_{i+1} $$$ ($$$a_{i+1}$$$ is multiple of $$$a_{i}$$$)

I found really cool fact:

  • lets $$$ANS_{n,c}$$$ be the answer for $$$n$$$, $$$c$$$

  • Lets $$$A_{c} = ANS_{1,c},ANS_{2,c},ANS_{3,c},\ldots$$$

Surprisingly, $$$A_{c}$$$ can be represented as polynomial $$$P_{c}$$$ of degree exactly $$$\lfloor{\log_2{c}}\rfloor$$$, so $$$P_{c}(X) = ANS_{X,c}$$$

Why is even $$$\log_2$$$ came up here?

By the way, im struggle to find pattern for coefficients of $$$P_{c}$$$. I noticed that (Lets coefficient of $$$x^i$$$ be $$$P_{c_{i}}$$$ ) $$$P_{c_{i}} = \frac{F(c,i)}{(\lfloor{\log_2{c}}\rfloor + i)!}$$$ where $$${F(c,i)}$$$ is some weird function I cannot determine.

I attached calculated coefficients and code for calculating them, hope someone will see a pattern there.

coefficients
code for calculating coefficients

If someone have any information about it, please provide!

link to atcoder problem and my solution which uses the fact about polynomial of degree $$$\lfloor{\log_2{c}}\rfloor$$$

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en4 Английский brezhart 2022-03-09 22:29:51 9
ru5 Русский brezhart 2022-03-09 22:29:17 9
ru4 Русский brezhart 2022-03-09 21:17:31 4 Мелкая правка: 'ответ для n, c\n\n- Пуст' -> 'ответ для $n$, $c$\n\n- Пуст'
en3 Английский brezhart 2022-03-09 21:17:02 10
ru3 Русский brezhart 2022-03-09 21:16:28 6 (опубликовано)
en2 Английский brezhart 2022-03-09 21:06:30 235 Tiny change: 'determine. I attache' -> 'determine.</br></br> I attache' (published)
ru2 Русский brezhart 2022-03-09 21:02:01 1398 Мелкая правка: 'ность.\n\n<spoil' -> 'ность.\n\n\n<spoil'
en1 Английский brezhart 2022-03-09 20:50:05 1588 Initial revision for English translation (saved to drafts)
ru1 Русский brezhart 2022-03-09 20:49:17 1588 Первая редакция (сохранено в черновиках)