1519D - Maximum Sum of Products
Idea
Assuming the old range is l~r, and expanded it by one unit, we get l-1~r+1,
It's interesting that, we only need calculate the changed portion, that is:
add: a[r+1]*b[l-1] + a[l-1]*b[r+1]
sub: a[l-1]*b[l-1] + a[r+1]*b[r+1]
Implementation
To implement this traversal, consider two scenarios:
when the swapped sequence has an even length, and when the swapped sequence has an odd length.
The indices for these scenarios are as follows:
- Odd length: l-i~r+i
- Even length: l-i+1~r+i
Code
#include <iostream>
typedef long long int LL;
LL a[5010];
LL b[5010];
int main() {
int n;
std::cin >> n;
for (int i = 0;i < n;i++) {
std::cin >> a[i];
}
for (int i = 0;i < n;i++) {
std::cin >> b[i];
}
// Record the maximum value of change
LL max = 0;
// case of odd number exchange
// Traverse Center
// Note: It is meaningless to exchange only one, so at least three should be exchanged
for (int i = 1; i < n - 1; i++) {
LL delta = 0;
// Exchange radius
for (int r = 1; i - r >= 0 && i + r < n; r++) {
delta -= a[i - r] * b[i - r] + a[i + r] * b[i + r];
delta += a[i - r] * b[i + r] + a[i + r] * b[i - r];
if (delta > max)
max = delta;
}
}
// The case of even number exchange
// The definition is that the index is on the left side
for (int i = 0; i < n - 1;i++) {
LL delta = 0;
// Exchange radius
for (int r = 1; (i - r + 1) >= 0 && (i + r) < n;r++) {
delta -= a[i - r + 1] * b[i - r + 1] + a[i + r] * b[i + r];
delta += a[i - r + 1] * b[i + r] + b[i - r + 1] * a[i + r];
if (delta > max)
max = delta;
}
}
// Calculate Total Sum
LL sum = 0;
for (int i = 0;i < n;i++) {
sum += a[i] * b[i];
}
std::cout << sum + max;
return 0;
}