Codeforces и Polygon могут быть недоступны в период с 6 декабря, 22:00 (МСК) по 7 декабря, 00:00 (МСК) в связи с проведением технических работ. ×

[Tutorial] Optimized solution for Knapsack problem

Правка en4, от sdnr1, 2018-05-21 16:42:51

Problem Statement

We are going to deal with the well known knapsack problem with an additional constraint in this blog. We are given a list of N items and a knapsack of size W. Every item has a cost ci associated with it (1 ≤ i ≤ N). We can select some items from the list such sum of the cost of all the selected items does not exceed W. The goal is tell for all w (0 ≤ w ≤ W), if we can select any number of items such that their total cost equals w. This is also known as the 0/1 knapsack problem. The addition constraint we have is .


The bounded knapsack problem

The bounded knapsack problem is like the 0/1 knapsack problem, except in this we are also given a count for each item. In other words, each item has a count si associated with it and we can select an item si times (1 ≤ i ≤ N).


Solving bounded knapsack problem

The solution is simple. Let dp[i][j] be the minimum count of ith item that has to be used to get a total cost of j while using some number (possibly 0) of first i items. If a total cost of j can not be obtained using first i items, then dp[i][j] =  - 1. The following code is used to calculate the dp[i][j],

if(dp[i-1][j] >= 0)
    dp[i][j] = 0;
else if(dp[i][j - c[i]] >= 0 and dp[i][j - c[i]] < s[i])
    dp[i][j] = dp[i][j - c[i]] + 1;
else
    dp[i][j] = -1;

Here, c[i] is the cost and s[i] is the count for ith item. Also, dp[0][j] =  - 1 for all 1 ≤ j ≤ W and dp[0][0] = 0.

Теги #dp, knapsack

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en9 Английский sdnr1 2018-05-24 09:40:32 385
en8 Английский sdnr1 2018-05-22 22:02:49 17
en7 Английский sdnr1 2018-05-21 17:50:32 2 (published)
en6 Английский sdnr1 2018-05-21 17:45:34 25
en5 Английский sdnr1 2018-05-21 17:43:48 768
en4 Английский sdnr1 2018-05-21 16:42:51 460
en3 Английский sdnr1 2018-05-21 16:23:38 305
en2 Английский sdnr1 2018-05-21 15:58:49 12
en1 Английский sdnr1 2018-05-21 15:47:22 1023 Initial revision (saved to drafts)