2 Special cases of Gaussian [Tutorial]

Revision en51, by MazzForces, 2018-06-19 14:48:09

Hello Codeforces. Today I'm writing about a Math topic that is simple, but resources and problems are limited.

SLAE stands for system of linear equations. Basically, consider we have a set of equations of the form :

a0·x0 + a1·x1 + a2·x2 + ... + an - 1·xn = val0

b0·x0 + b1·x1 + b2·x2 + .... + bn - 1·xn - 1 = val1

c0·x0 + c1·x1 + c2·x2 + .... + cn - 1·xn - 1 = val2

.....

Note that all a, b, c... are real-valued arrays and all vali are arbitrary reals. Realize how x0, x1, ...xn - 1 appear in each of the equations. In the post below, it is assumed we are dealing with Rationals, and not only integers.

Now, we want to find values of [x0, x1...xn - 1] that satisfy each of the given equations listed, given all a, b, c... and vali. The simplest method to find such solutions is to use Gaussian Elimination, that solves the problem in O(N3), where N = number of equations = number of variables .

To Learn about Gaussian Elimination, click here. Today, we shall learn about 2 special class of problems that can be solved using Gaussian Elimination.

Problem 1 : Markov Chains and Cyclic Expected Values :

Many a times as a part of expected value problems, you are expected to sum up infinite series that hold as limits, as probabilities lie in the closed interval [0, 1]. For example,

, as

However, not always can we expect the variables whose Expected value we need to calculate to be independent. Consider you have N random variables , where , there are cyclic dependencies among the variables for their expected values, i.e consider E(X1) depends on E(X2), E(X2) on E(X3) and E(X3) depends on E(X1). So, there exists an infinite loop for calculating the Expected values of the random variables.

For example, consider the following problem :

You are given Tree T consisting of N nodes. Initially there is a player in node S. In a single move, he moves to one of the adjacent nodes of the node he is currently at, each with equal probability. What is the expected number of moves before he reaches node T ?.

Here, we need to understand that the probabilities are infinite as well as cyclic. Creating a simple formula for the answer is quite hard. The Expected value starting from node S depends on some neighbor of node S, however, the Expected value of some neighbor of node S depends on Expected value of node S. Notice that whenever we reach a particular node, the probability of moving to any other node regardless of the number of steps performed always remains the same. So, this is a Markov Chain. Let's consider the transition matrix of this chain.

Create a matrix P, where P[i][j]= probability of moving from node i to j in a single move. Now, Let E(i) denote the expected number of steps needed to reach node T from node i.

.

Try and take a moment and think about why this formula is correct.

Spoiler

Surprise Surprise, this can be modeled as SLAE. Rewrite equations as :

. So the system is :

\begin{equation} \begin{pmatrix} 1-P[0][0] & -P[0][1] & ... & -P[0][N-1] \newline -P[1][0] & 1-P[1][1] & ... & -P[1][N-1] \newline .... \newline -P[N-1][0] & -P[N-1][1] & ... & 1-P[N-1][N-1] \end{pmatrix} \cdot \begin{pmatrix} E(0) \newline E(1) \newline . \newline . \newline E(n-1) \end{pmatrix} = \begin{pmatrix} 1 \newline 1 \newline .. \newline 1 \end{pmatrix} \end{equation}

This is the equation (IN - PE = 1, We need to find E. Note that for node T, we need to have P[t][i] = 0, t ≠ i and P[t][t] = 1, as we won't move from node T, it is an absorbent state of the Markov chain. So, the Tth row of matrix IN - P will be all zeros. Also, the equation does not hold true for node T. Also, we know E(t) = 0. So, the part P[i][tE(t) does not affect any of the equations. So, just remove the Tth row and column from both sides of the equation.

The matrix is now a square (N - 1)·(N - 1) matrix, that is invertible. Invert the matrix using Gaussian Elimination augmenting with the RHS, to obtain E, i.e. E(i), 0 ≤ i ≤ N - 1, i ≠ T

We can use this generic technique in all cases where the expected values are cyclic in nature , i.e expected value of state A depends on state B, and expected value of state B depends on state A. We can use any prime mod too, to obtain expected value in Modulo. Just remember : dependent random variables A -  > B, B -  > A : Gaussian Elimination .

Practice Problems :

One (Same problem as above) My Code

Two

Problem 2 : Xor's using SLAE

Pr-requisite : Vector Space properties, Linear Algebra.

Without reading the link, proceed at your own risk.

mod 2

mod 2

mod 2

So, xor is just bit-wise addition mod 2. We can represent the xor of two integer's x, y as vector addition in . For example ,

i.e. ,

\begin{equation} \begin{pmatrix} 0 \newline 1 \newline 0 \end{pmatrix} + \begin{pmatrix} 1 \newline 1 \newline 1 \end{pmatrix} \equiv \begin{pmatrix} 1 \newline 0 \newline 1 \end{pmatrix}
Mod \space 2
\end{equation}

So, we can use this addition to replace xor.The main advantage of this scheme is that we have converted the subset xor problem to solving a linear system instead. Consider we want to find a, b, c such that:

a·v1 + b·v2 + c·v3 ≡ x Mod 2, given v1, v2, v3 and x. Here v1, v2, v3, x are arbitrary binary column vectors. This is equivalent to solving the linear system :

\begin{equation} \begin{pmatrix} v1 & v2 & v3 \end{pmatrix} \cdot \begin{pmatrix} a \newline b \newline c \end{pmatrix} \equiv x \hspace{0.2cm} Mod \hspace{0.2cm} 2 \end{equation}.

Since a, b, c can only belong to {0, 1}, this is precisely finding a solution to subset xor.

Note that the span of any given set of size N is a vector space. There is a concept called as Basis of a vector space , i.e a smallest size subset of a given set that spans the entire vector space spanned by the original set given. We can solve the same problem over smaller sized basis rather than using all the elements of the set.

Via the Basis, we can solve useful xor based problems such as :

1> Given a set S of size N, find the number of distinct integers that can be represented using xor over the set of the given elements.

Solution

2> How many subsequences of a given set S of size N have xor equal to X. (Do it yourself).

Hint

3> What is the maximum possible xor you can have using a subset of a given set :

Solution

All of these problems can be modeled using SLAE in Mod 2. We can do operations faster in Mod 2 using bitset having complexity .

Problems :

One

Two

Tags gauss elimination, #math, xor

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en66 English MazzForces 2018-07-12 14:00:20 4
en65 English MazzForces 2018-06-29 19:00:27 23
en64 English MazzForces 2018-06-29 17:43:14 8
en63 English MazzForces 2018-06-29 16:20:35 30
en62 English MazzForces 2018-06-29 16:18:29 19
en61 English MazzForces 2018-06-29 04:16:09 24
en60 English MazzForces 2018-06-28 19:10:43 0 (published)
en59 English MazzForces 2018-06-26 13:36:11 174
en58 English MazzForces 2018-06-23 15:26:12 20
en57 English MazzForces 2018-06-23 14:43:15 145
en56 English MazzForces 2018-06-23 14:41:38 305
en55 English MazzForces 2018-06-21 14:36:53 25
en54 English MazzForces 2018-06-21 14:35:52 10
en53 English MazzForces 2018-06-19 16:10:21 10
en52 English MazzForces 2018-06-19 16:01:40 57
en51 English MazzForces 2018-06-19 14:48:09 35
en50 English MazzForces 2018-06-19 14:44:05 10
en49 English MazzForces 2018-06-19 14:42:50 1147
en48 English MazzForces 2018-06-19 14:20:26 300
en47 English MazzForces 2018-06-19 02:52:44 46
en46 English MazzForces 2018-06-19 02:51:31 311
en45 English MazzForces 2018-06-19 02:39:49 397
en44 English MazzForces 2018-06-18 18:38:16 95
en43 English MazzForces 2018-06-18 18:35:15 449
en42 English MazzForces 2018-06-18 18:25:37 1
en41 English MazzForces 2018-06-18 18:22:47 419
en40 English MazzForces 2018-06-18 15:30:43 1
en39 English MazzForces 2018-06-18 15:28:38 25
en38 English MazzForces 2018-06-18 15:26:54 28
en37 English MazzForces 2018-06-18 15:24:44 2
en36 English MazzForces 2018-06-18 15:23:06 77
en35 English MazzForces 2018-06-18 15:18:55 192
en34 English MazzForces 2018-06-18 13:28:47 11
en33 English MazzForces 2018-06-18 13:27:50 183
en32 English MazzForces 2018-06-18 13:25:45 10
en31 English MazzForces 2018-06-18 13:24:22 258
en30 English MazzForces 2018-06-18 13:21:38 46
en29 English MazzForces 2018-06-14 01:37:31 49
en28 English MazzForces 2018-06-14 01:36:14 23
en27 English MazzForces 2018-06-14 01:34:56 351
en26 English MazzForces 2018-06-14 01:29:07 122
en25 English MazzForces 2018-06-14 01:26:02 3
en24 English MazzForces 2018-06-14 01:25:29 10
en23 English MazzForces 2018-06-14 01:23:41 10
en22 English MazzForces 2018-06-14 01:22:47 2
en21 English MazzForces 2018-06-14 01:21:08 616
en20 English MazzForces 2018-06-14 01:12:44 8
en19 English MazzForces 2018-06-14 01:12:20 30
en18 English MazzForces 2018-06-14 01:10:35 26
en17 English MazzForces 2018-06-14 01:09:47 296
en16 English MazzForces 2018-06-14 01:05:44 435
en15 English MazzForces 2018-06-14 00:49:59 33
en14 English MazzForces 2018-06-14 00:46:47 561
en13 English MazzForces 2018-06-14 00:39:17 725
en12 English MazzForces 2018-06-13 23:57:55 3
en11 English MazzForces 2018-06-13 23:57:32 4
en10 English MazzForces 2018-06-13 23:57:00 48
en9 English MazzForces 2018-06-13 23:44:26 6
en8 English MazzForces 2018-06-13 23:43:54 916
en7 English MazzForces 2018-06-13 23:18:06 1008
en6 English MazzForces 2018-06-13 22:40:02 42 Tiny change: ' as $ \lim{ x \to \inft} i^x =0 $' -> ' as $ \lim_{ x \to \infty} i^x =0 $'
en5 English MazzForces 2018-06-13 16:14:26 8 Tiny change: 'n-1} \cdot3000000 x_{n-1} =' -> 'n-1} \cdot x_{n-1} ='
en4 English MazzForces 2018-06-13 16:13:54 385 Tiny change: 'expect to calculate such sums. Con' -> 'expect to reach such simple sums. Con'
en3 English MazzForces 2018-06-13 12:57:35 532
en2 English MazzForces 2018-06-13 12:49:16 239 Tiny change: 'Codeforces,\n\nSLAE s' -> 'Codeforces.\n\nSLAE s'
en1 English MazzForces 2018-06-13 12:43:24 594 Initial revision (saved to drafts)