Блог пользователя Last_Of_UsOO

Автор Last_Of_UsOO, история, 6 месяцев назад, По-английски

Can the set bit be counted at each position throughout the range [L, R]? 1 <= L, R <= 10^12

Example : [5, 13]

5:    101
6:    110
7:    111
8:   1000
9:   1001
10:  1010
11:  1011
12:  1100
13:  1101

0th position : 5 1st position : 4 2nd position : 5 3rd position : 6

  • Проголосовать: нравится
  • +5
  • Проголосовать: не нравится

»
6 месяцев назад, # |
  Проголосовать: нравится +19 Проголосовать: не нравится

I think we can using digit dp on binary representation of number

»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

You Can Take Help From this

They Explain all way to explain this problem.

»
6 месяцев назад, # |
Rev. 2   Проголосовать: нравится +3 Проголосовать: не нравится

Digit Dp and maybe Gray code can be used. https://www.geeksforgeeks.org/what-is-gray-code/

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится
    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    
    ll solve( ll bit , ll n )
    {
            ll powr = ( 1ll << bit );
            if( powr > n )
            return 0;
    
    	ll repeat = n / ( powr * 2 ) ;
    	ll mod = n % ( powr * 2 );
    	ll tot = repeat*powr;
    	tot += max(0ll,mod-powr);
    	return tot;
    }
    
    signed main()
    {
        ll l,r;
        cin>>l>>r;
    
        // r <= 1e12
        vector<ll>set_bits(41,0);
    
        for( ll p = 0 ; ( 1ll << p ) <= r ; p++ )
        set_bits[p] = solve(p,r+1) - solve(p,l);
        
    }
    
    
    
    
»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Use the fact that the bits at ith position alternate after every 2^i numbers. So for a bit i, find the first number after L which has it set call it L_set, and first number below L which has it un-set called it L_unset this can be done in constant time. Similarly do it for R also, now that you know the range — [L_unset+1, R_unset-1] has a multiple of 2^i numbers and you know L_unset, L_set, R_unset and R_set you can subtract the out of range elements from this count.

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    So I've to find every first number that is set at ith index and then count the 2^i time.

    • »
      »
      »
      6 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      no pre-computing is required we can do that at every query for L and R as it takes constant time, that's better imo

»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For i. bit,

$$$f(X)$$$ will give count of numbers in $$$1 \leq y \leq X$$$

You can see the contrubition pattern is $$$i$$$ number of 0s, $$$i$$$ number of 1s, $$$i$$$ number of 0s, etc.

So if $$$X$$$ equals $$$2^{(i + 1)} \times y$$$, count is $$$2^i \times y$$$

Else, divide it into 2 parts: $$$2^{(i + 1)} \times y$$$, and another part, $$$Z$$$, which is in $$$0 \leq Z \le 2^{(i + 1)}$$$, and the first part calculation is the same.

We can say for another part their contrubition pattern is $$$i$$$ numbers of 0 and $$$i$$$ number of 1. (Not any more)

If it is smaller than $$$2^i$$$, its contribution is 0

Else its contrubition is $$$Z - 2^i$$$

And answer for i. bit is $$$f(R) - f(L - 1)$$$

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится -11 Проголосовать: не нравится

    Bro it's hard to be understand can you simplify it.

    • »
      »
      »
      6 месяцев назад, # ^ |
      Rev. 4   Проголосовать: нравится 0 Проголосовать: не нравится

      It is about contribution pattern.

      Example if we consider i=1, pattern is like 0011 0011 0011 0011...

      So you need only count 1s in this pattern

»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

You can use the fact that the first bit is going to appear 1 time every 2 numbers, the second bit is going to appear 2 times every 4 number, the third bit 4 times every 8 numbers and so on

»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Hi, you can try this. Given function computes total set bits from 1 to A. You can either use it as f(R) — f(L-1) or modify this function itself to compute it directly from L->R.

It runs in O(32) and uses the fact that at a given bit position, there's always a repetitive pattern. I'll leave the rest to you for figuring out.

    def solve(A):
        count = 0
        
        for b in range(32):
            x = 1<<b
                
            y = A-x+1
            if y<0:
                break
                
            z = y//x
            
            count += (z//2+z%2)*x + (z%2==0)*(y%x)
                        
        return count
»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I recently created a video on this topic. I also created a practice problem. You can submit your code here

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    It make Sense

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится
    • There is a pattern for counting the set bit at every index. if the number N are in the form of 2^x..
    • But, if number N lies into the 2^i & 2^(I + 1) and may its larger number. so how we count.
»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

This stack overflow link might be helpful -> Stack overflow question